Das Modell zeigte, dass sich eine Krankheit in einer Population hielt, wenn die Population im Gleichgewicht – Geburten, Zuwanderung und natürliche Sterberate sind ausgeglichen – größer ist als ein Schwellenwert, der die Ansteckungsrate, Genesungsrate sowie die natürliche und krankheitsbedingte Sterberate kombiniert. Mit der Krankheit ist die Population kleiner als ohne sie. Wenn sie einen Wert unter dem Schwellenwert erreicht, verschwindet die Krankheit. Und ist die Population erst einmal ohne Krankheit, kehrt sie zum Gleichgewichtszustand zurück.
Anderson und May mussten zeigen, dass ihr Modell Populationen in der realen Welt genau beschrieb. Dazu verwendeten sie Daten aus Laborexperimenten, in denen Mäuse mit der Pasteurellose, einer bakteriellen Krankheit, infiziert worden waren. Die Beobachtungsdaten bestätigten ihre Modellierung, von da ab konnten die Wissenschaftler die Auswirkungen auch von hypothetischen Werten ausgehend betrachten. So erkannten sie, dass die Krankheit den größten Einfluss auf die Population hatte, wenn die Geburten- oder Zuwanderungsrate am höchsten war. Demnach sind Arten mit einer hohen Vermehrungsrate (die viele nicht infizierte Jungtiere hevorbringt) am wahrscheinlichsten von endemischen Krankheiten betroffen. Zudem ist ihre Zahl niedriger bei Arten, die sich langsamer vermehren. Die Forscher konnten auch die Folgen unterschiedlich intensiver Krankheiten berechnen lassen.
Im Gegensatz zu endemischen Krankheiten, bei denen der Infektionsgrad in einer Population konstant bleibt, treten Epidemien dann auf, wenn die Zahl der infizierten und empfänglichen Individuen im Vergleich zur Sterberate klein ist. Dann steigen die Infektionszahlen steil an und fallen wieder ab. Epidemien treten auch auf, wenn eine Krankheit zwar nicht sehr tödlich ist, aber das Wachstum der Population verlangsamt; dies betrifft menschliche Krankheiten wie Masern und Windpocken.
Das Wissen über die Merkmale von Krankheiten und welche Folgen sich für Tier- und Pflanzenpopulationen daraus ergeben, wird für die Ökologie immer wichtiger. Landwirte etwa profitieren davon, dass Parasiten und die Dynamik von Krankheiten, die Nutzpflanzen und -tiere befallen, erkundet werden. Naturschützer ebenfalls, wenn sie sich damit befassen, wie exotische Krankheiten und invasive Parasiten empfindliche Ökosysteme beeinflussen. 
Venn-Diagramm der ökologischen Epidemiologie
Ein Pathogenverursacht eine Krankheit, wenn ein empfänglicher Wirt in einer infektionsfördernden Umwelt gegeben ist, hier als Schnittmenge der Kreise dargestellt. So verbreitet sich Durchfall schnell in unhygienischen Verhältnissen.
Dürren und Pflanzenkrankheiten
Wie andere Krankheitserreger brauchen auch Pflanzenpathogene einen Pool von empfänglichen Wirtsindividuen, die sie infizieren können. In Dürreperioden verlangsamen sich das Wachstum und die Vermehrung, wodurch weniger Krankheiten auftreten.
Doch Trockenheit schwächt die Pflanzen auch und macht sie empfindlicher für Krankheitserreger, die trockene Verhältnisse aushalten. Dazu gehören verschiedene Pilze, die die Blätter von Getreide, Hülsenfrüchten und Obst befallen. Sie sind daran angepasst, in inaktivem Zustand als harte, mikroskopisch kleine Körper zu überleben, im trockenen Boden schaffen sie das über Jahre. Doch bei Feuchtigkeit müssen sie in wenigen Wochen einen Wirt finden, um nicht zu sterben. Sie töten den Wirt nicht immer. Forschungen an Kichererbsen zeigen, dass bei Trockenheit mehr Infektionen durch diese Pilze entstehen, aber die Sterberate der Pflanzen bei Dürre abnimmt.
Bei einer Sommerdürrewachsen junge Gerstenpflanzen kaum. Trockenheit und Hitze verringern ihre Widerstandskraft gegen Pilze, die ihre Wurzeln befallen.
WARUM PINGUINE NIEMALS KALTE FÜSSE HABEN
ÖKOPHYSIOLOGIE
IM KONTEXT
SCHLÜSSELFIGUR
Knut Schmidt-Nielsen(1915–2007)
FRÜHER
1845Der deutsche Entdecker Alexander von Humboldt erkennt, dass Pflanzen bei ähnlichen ökologischen Faktoren viele ähnliche Merkmale haben.
1859Charles Darwin meint, dass sich Lebewesen durch Anpassung an sich wandelnde Umweltfaktoren entwickeln.
SPÄTER
1966Die australischen Biochemiker Marshall Hatch und Charles Slack stellen fest, dass die am weitesten verbreiteten Pflanzen die mit der effizientesten Fotosynthese sind.
1984Der Brite Peter Wheeler meint, dass die Bipedie (aufrechter Gang auf zwei Beinen) beim Menschen eine Anpassung zur Wärmeregulation ist, damit möglichst wenig Körperfläche der Sonne ausgesetzt wird.
Das Grundprinzip der darwinschen Evolution ist, dass alle Lebewesen, von einfachen Bakterien bis zu komplexen Säugetieren, durch natürliche Selektion an das Überleben in einer bestimmten Nische angepasst sind. Die Ökophysiologie, für die das Buch Animal Physiology (1960; dt.: Physiologie der Tiere , 1965) von Knut Schmidt-Nielsen eine wichtige Basis ist, erforscht, wie Anatomie und Physiologie eines Lebewesens mit den Bedingungen in seiner Umwelt zusammenhängen. Sie zeigt, wie die Anatomie von Tieren oder Pflanzen mit der Fähigkeit zum Überleben, aber auch der Verbreitung, Häufigkeit und Fruchtbarkeit verbunden ist. Die Ökophysiologie hilft uns zu verstehen, wie Belastungen durch den Klimawandel natürliche Ökosysteme, aber auch Kulturlandschaften beeinflussen.
»Aus physiologischer Sicht ist Süßwasser im Meer nicht leichter verfügbar als in der Wüste. «
Knut Schmidt-Nielsen The Camel’s Nose , 1998
Die Ökophysiologie hat einige spezifische Anpassungen an verschiedene Umwelten gefunden. So haben Tiere in kälteren Regionen generell größere Körper und kleinere Beine, Ohren und Schwänze als verwandte Arten in wärmeren Klimata. Bei einem großen Körper ist das Verhältnis der Oberfläche zum Volumen kleiner, sodass er weniger Wärme verliert, und kleinere abstehende Körperteile senken das Risiko für Erfrierungen.
Extreme Kälte birgt die Gefahr, dass die Füße warmblütiger Tiere am Boden festfrieren. Arktische Säugetiere wie Moschusochsen und Eisbären haben daher dicke, isolierende Haare an den Füßen.
Die Fußunterseite bei Pinguinen in der Antarktis wird durch eine dicke Fettschicht isoliert. Pinguine haben zudem Wärmetauscher nach dem Gegenstromprinzip in den Beinen. Das warme Blut vom Körper wird durch das kalte Blut, das von den Füßen aus zurückströmt, auf fast 0 °C gekühlt, dabei wird dies selbst wieder auf Körpertemperatur erwärmt.
Gazellen in Afrika haben ein ähnliches Gegenstromsystem zur Kühlung. Das Blut wird hier zum Kopf hin gekühlt, was ihnen einen Vorteil gegenüber Räubern gibt, die bei der Jagd oft überhitzen. Kamele haben einen Wärmetauscher in der Nasenhöhle, um den Wasserverlust beim Ausatmen zu verringern. Heiße, trockene Luft wird eingeatmet und mischt sich in der Nase mit feuchter Luft, bevor sie in die Lunge gelangt. Die ausgeatmete Luft ist kühler als die Außenluft, und ihre Feuchtigkeit kondensiert in der Nase. So entstehen die kühlen, feuchten Verhältnisse, die den nächsten Atemzug kühlen.
Читать дальше