Stephen Rolt - Optical Engineering Science

Здесь есть возможность читать онлайн «Stephen Rolt - Optical Engineering Science» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Optical Engineering Science: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Optical Engineering Science»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A practical guide for engineers and students that covers a wide range of optical design and optical metrology topics Optical Engineering Science Optical engineering science is at the foundation of the design of commercial optical systems, such as mobile phone cameras and digital cameras as well as highly sophisticated instruments for commercial and research applications. It spans the design, manufacture and testing of space or aerospace instrumentation to the optical sensor technology for environmental monitoring. Optics engineering science has a wide variety of applications, both commercial and research. This important book:
Offers a comprehensive review of the topic of optical engineering Covers topics such as optical fibers, waveguides, aspheric surfaces, Zernike polynomials, polarisation, birefringence and more Targets engineering professionals and students Filled with illustrative examples and mathematical equations Written for professional practitioners, optical engineers, optical designers, optical systems engineers and students,
offers an authoritative guide that covers the broad range of optical design and optical metrology topics and their applications.

Optical Engineering Science — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Optical Engineering Science», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Worked Example 4.2 Microscope Cover Slip

A microscope cover slip 0.17 mm thick is to be used with a microscope objective with a numerical aperture of 0.8. The refractive index of the cover slip is 1.5. What is the root mean square (rms) spherical aberration produced by the cover slip? The aberration is illustrated in Figure 4.7.

From Eq. (4.24):

Figure 47 Spherical aberration in cover slip - фото 271 Figure 47 Spherical aberration in cover slip Substituting the above values we - фото 272 Figure 47 Spherical aberration in cover slip Substituting the above values we - фото 273

Figure 4.7 Spherical aberration in cover slip.

Substituting the above values we get: K sa= 0.003 22 mm or 3.2 μm.

The wavefront error (in microns) is thus given by:

Optical Engineering Science - изображение 274

where p is the normalised pupil function.

For reasons that will become apparent later in practice wavefront errors are - фото 275

For reasons that will become apparent later, in practice, wavefront errors are usually expressed as a fraction of some standard wavelength, for example 589 nm. The above wavefront error represents about 0.4 × λ when expressed in this way. An rms wavefront error of about λ/14 is considered consistent with good image quality. This level of aberration is, therefore, significant and measures must be taken (within the objective) to correct for it.

4.4.2 Aberrations of a Thin Lens

We extend the treatment already outlined to analyse a thin lens. A thin lens can be considered as combination of two refractive surfaces, where the distance between the two surfaces is ignored. In practice, this is a reasonable assumption, provided the thickness is much less than the radii of the surfaces in question. Of course, the wavefront error produced by the two surfaces is simply the sum of the aberrations of the individual surfaces. A schematic for the analysis is shown in Figure 4.8.

The wavefront error contribution for the first surface is very easy to compute; it is simply that set out in Eqs. (4.5a)– (4.5d). To compute the contribution for the second surface, one can analyse this using the same methodology as in Section 4.2, but exploiting natural symmetry. That is to say, one can analyse the second surface by rotating the whole surface about the y axis, such that z → −z and x → −x. In this event, for the second surface, R → − R 2, uv , θ → −θ. It is then simply a case of substituting these values into the formulae in Eqs. (4.5a)– (4.5d)and adding the wavefront error contribution of the first surface. The total wavefront error for the thin lens is then:

Figure 48 Aberration analysis for thin lens 425a 425b - фото 276

Figure 4.8 Aberration analysis for thin lens.

(4.25a) 425b 425c 425d - фото 277

(4.25b) 425c 425d 4421 Co - фото 278

(4.25c) 425d 4421 Conjugate Parameter and Lens Shape Parameter In terms of - фото 279

(4.25d) 4421 Conjugate Parameter and Lens Shape Parameter In terms of gaining some - фото 280

4.4.2.1 Conjugate Parameter and Lens Shape Parameter

In terms of gaining some insight into the behaviour of a thin lens, the formulae in Eqs. (4.25a)– (4.25d)are a little opaque. It would be somehow useful to express the aberrations of a thin lens directly in terms of its focusing power and some other parameters. The first of these other parameters is the so called conjugate parameter, t . The conjugate parameter is defined as below:

(4.26) Optical Engineering Science - изображение 281

As we are dealing with a thin lens, we can use the thin lens formula to calculate the focal length, f , of the lens:

Optical Engineering Science - изображение 282

This, in turn, leads to expressions for u and v :

(4.27) Figure 49illustrates the conjugate parameter schematically The infinite - фото 283

Figure 4.9illustrates the conjugate parameter schematically. The infinite conjugate is represented by a conjugate parameter of ±1. If the conjugate parameter is +1, then the image is at infinity. Conversely, a conjugate parameter of −1 is associated with an object located at the infinite conjugate. In the symmetric scenario where object and image distances are identical, then the conjugate parameter is zero. As illustrated in Figure 4.9, where the conjugate parameter is greater than 1, then the object is real and the image is virtual. Finally, where the conjugate parameter is less than −1, then the object is virtual and the image is real.

Figure 49 Conjugate parameter Figure 410 Coddington lens shape parameter - фото 284

Figure 4.9 Conjugate parameter.

Figure 410 Coddington lens shape parameter We have thus described object and - фото 285

Figure 4.10 Coddington lens shape parameter.

We have thus described object and image location in terms of a single parameter. By analogy, it is also useful to describe a lens in terms of its focal power and a single parameter that describes the shape of the lens. The lens, of course, is assumed to be defined by two spherical surfaces, with radii R 1and R 2, defining the first and second surfaces respectively. The shape of a lens is defined by the so-called Coddington lens shape factor, s, which is defined as follows:

(4.28) As before the power of the lens may be expressed in terms of the lens radii - фото 286

As before, the power of the lens may be expressed in terms of the lens radii:

where n is the lens refractive index As with the conjugate parameter and the - фото 287

where n is the lens refractive index .

As with the conjugate parameter and the object and image distances, the two lens radii can be expressed in terms of the lens power and the shape factor, s .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Optical Engineering Science»

Представляем Вашему вниманию похожие книги на «Optical Engineering Science» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Optical Engineering Science»

Обсуждение, отзывы о книге «Optical Engineering Science» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x