Mark W. Spong - Robot Modeling and Control
Здесь есть возможность читать онлайн «Mark W. Spong - Robot Modeling and Control» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Robot Modeling and Control
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:4 / 5. Голосов: 2
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
Robot Modeling and Control: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Robot Modeling and Control»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
, students will cover the theoretical fundamentals and the latest technological advances in robot kinematics. With so much advancement in technology, from robotics to motion planning, society can implement more powerful and dynamic algorithms than ever before. This in-depth reference guide educates readers in four distinct parts; the first two serve as a guide to the fundamentals of robotics and motion control, while the last two dive more in-depth into control theory and nonlinear system analysis.
With the new edition, readers gain access to new case studies and thoroughly researched information covering topics such as:
● Motion-planning, collision avoidance, trajectory optimization, and control of robots
● Popular topics within the robotics industry and how they apply to various technologies
● An expanded set of examples, simulations, problems, and case studies
● Open-ended suggestions for students to apply the knowledge to real-life situations
A four-part reference essential for both undergraduate and graduate students,
serves as a foundation for a solid education in robotics and motion planning.
in Equation ( 2.9) represents a rotational transformation between the frames o 0 x 0 y 0 z 0and o 1 x 1 y 1 z 1. Suppose we now add a third coordinate frame o 2 x 2 y 2 z 2related to the frames o 0 x 0 y 0 z 0and o 1 x 1 y 1 z 1by rotational transformations. A given point p can then be represented by coordinates specified with respect to any of these three frames:
,
, and
The relationship among these representations of p is


is a rotation matrix. Substituting Equation ( 2.14) into Equation ( 2.13) gives
and
represent rotations relative to the frame o 0 x 0 y 0 z 0while
represents a rotation relative to the frame o 1 x 1 y 1 z 1. Comparing Equations ( 2.15) and ( 2.16) we can immediately infer
in the frame o 2 x 2 y 2 z 2to its representation
in the frame o 0 x 0 y 0 z 0, we may first transform to its coordinates
in the frame o 1 x 1 y 1 z 1using
and then transform
to
using
.
. Then, with the frames o 1 x 1 y 1 z 1and o 2 x 2 y 2 z 2coincident, we rotate o 2 x 2 y 2 z 2relative to o 1 x 1 y 1 z 1according to the transformation
. The resulting frame, o 2 x 2 y 2 z 2has orientation with respect to o 0 x 0 y 0 z 0given by
. We call the frame relative to which the rotation occurs the current frame.
represents a rotation of angle ϕ about the current y -axis followed by a rotation of angle θ about the current z -axis as shown in Figure 2.8. Then the matrix
is given by


.