Mark W. Spong - Robot Modeling and Control
Здесь есть возможность читать онлайн «Mark W. Spong - Robot Modeling and Control» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Robot Modeling and Control
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:4 / 5. Голосов: 2
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
Robot Modeling and Control: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Robot Modeling and Control»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
, students will cover the theoretical fundamentals and the latest technological advances in robot kinematics. With so much advancement in technology, from robotics to motion planning, society can implement more powerful and dynamic algorithms than ever before. This in-depth reference guide educates readers in four distinct parts; the first two serve as a guide to the fundamentals of robotics and motion control, while the last two dive more in-depth into control theory and nonlinear system analysis.
With the new edition, readers gain access to new case studies and thoroughly researched information covering topics such as:
● Motion-planning, collision avoidance, trajectory optimization, and control of robots
● Popular topics within the robotics industry and how they apply to various technologies
● An expanded set of examples, simulations, problems, and case studies
● Open-ended suggestions for students to apply the knowledge to real-life situations
A four-part reference essential for both undergraduate and graduate students,
serves as a foundation for a solid education in robotics and motion planning.
instead of
to denote the matrix. It is easy to verify that the basic rotation matrix
has the properties




specifying the orientation of o 1 x 1 y 1 z 1relative to o 0 x 0 y 0 z 0has these as its column vectors, that is,

of the point p (in other words, given the coordinates of p with respect to the frame o 1 x 1 y 1 z 1), we wish to determine the coordinates of p relative to a fixed reference frame o 0 x 0 y 0 z 0. The coordinates
satisfy the equation

by projecting the point p onto the coordinate axes of the frame o 0 x 0 y 0 z 0, giving
, which leads to
can be used not only to represent the orientation of coordinate frame o 1 x 1 y 1 z 1with respect to frame o 0 x 0 y 0 z 0, but also to transform the coordinates of a point from one frame to another. If a given point is expressed relative to o 1 x 1 y 1 z 1by coordinates
, then
represents the same pointexpressed relative to the frame o 0 x 0 y 0 z 0.
. To obtain its coordinates with respect to frame o 0 x 0 y 0 z 0, we merely apply the coordinate transformation Equation ( 2.9), giving