Mark W. Spong - Robot Modeling and Control

Здесь есть возможность читать онлайн «Mark W. Spong - Robot Modeling and Control» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Robot Modeling and Control: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Robot Modeling and Control»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A New Edition Featuring Case Studies and Examples of the Fundamentals of Robot Kinematics, Dynamics, and Control In the 2nd Edition of
, students will cover the theoretical fundamentals and the latest technological advances in robot kinematics. With so much advancement in technology, from robotics to motion planning, society can implement more powerful and dynamic algorithms than ever before. This in-depth reference guide educates readers in four distinct parts; the first two serve as a guide to the fundamentals of robotics and motion control, while the last two dive more in-depth into control theory and nonlinear system analysis.
With the new edition, readers gain access to new case studies and thoroughly researched information covering topics such as: 
● Motion-planning, collision avoidance, trajectory optimization, and control of robots
● Popular topics within the robotics industry and how they apply to various technologies
● An expanded set of examples, simulations, problems, and case studies
● Open-ended suggestions for students to apply the knowledge to real-life situations
A four-part reference essential for both undergraduate and graduate students,
serves as a foundation for a solid education in robotics and motion planning.

Robot Modeling and Control — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Robot Modeling and Control», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Robot Modeling and Control - изображение 110

It is important to notice that the local coordinates картинка 111of the corner of the block do not change as the block rotates, since they are defined in terms of the block’s own coordinate frame. Therefore, when the block’s frame is aligned with the reference frame o 0 x 0 y 0 z 0(that is, before the rotation is performed), the coordinates картинка 112equals картинка 113, since before the rotation is performed, the point pa is coincident with the corner of the block. Therefore, we can substitute Robot Modeling and Control - изображение 114into the previous equation to obtain

Robot Modeling and Control - изображение 115

This equation shows how to use a rotation matrix to represent a rotational motion. In particular, if the point pb is obtained by rotating the point pa as defined by the rotation matrix картинка 116, then the coordinates of pb with respect to the reference frame are given by

картинка 117

This same approach can be used to rotate vectors with respect to a coordinate frame, as the following example illustrates.

Example 2.3.

The vector v with coordinates v 0= (0, 1, 1) is rotated about y 0by Robot Modeling and Control - изображение 118as shown in Figure 2.7. The resulting vector v 1is given by

(2.10) Robot Modeling and Control - изображение 119

(2.11) Thus a third interpretation of a rotation matrix is as an operator acting on - фото 120

Thus, a third interpretation of a rotation matrix картинка 121is as an operator acting on vectors in a fixed frame. In other words, instead of relating the coordinates of a fixed vector with respect to two different coordinate frames, Equation ( 2.10) can represent the coordinates in o 0 x 0 y 0 z 0of a vector v 1that is obtained from a vector v by a given rotation.

Figure 26 The block in b is obtained by rotating the block in a by π about - фото 122

Figure 2.6 The block in (b) is obtained by rotating the block in (a) by π about z 0.

Figure 27 Rotating a vector about axis y 0 As we have seen rotation matrices - фото 123

Figure 2.7 Rotating a vector about axis y 0.

As we have seen, rotation matrices can serve several roles. A rotation matrix, either картинка 124or картинка 125, can be interpreted in three distinct ways:

1 It represents a coordinate transformation relating the coordinates of a point p in two different frames.

2 It gives the orientation of a transformed coordinate frame with respect to a fixed coordinate frame.

3 It is an operator taking a vector and rotating it to give a new vector in the same coordinate frame.

The particular interpretation of a given rotation matrix картинка 126should be made clear by the context.

Similarity Transformations

A coordinate frame is defined by a set of basis vectors, for example, unit vectors along the three coordinate axes. This means that a rotation matrix, as a coordinate transformation, can also be viewed as defining a change of basis from one frame to another. The matrix representation of a general linear transformation is transformed from one frame to another using a so-called similarity transformation. For example, if A is the matrix representation of a given linear transformation in o 0 x 0 y 0 z 0and B is the representation of the same linear transformation in o 1 x 1 y 1 z 1then A and B are related as

(2.12) Robot Modeling and Control - изображение 127

where картинка 128is the coordinate transformation between frames o 1 x 1 y 1 z 1and o 0 x 0 y 0 z 0. In particular, if A itself is a rotation, then so is B , and thus the use of similarity transformations allows us to express the same rotation easily with respect to different frames.

Example 2.4.

Henceforth, whenever convenient we use the shorthand notation c θ= cos θ , s θ= sin θ for trigonometric functions. Suppose frames o 0 x 0 y 0 z 0and o 1 x 1 y 1 z 1are related by the rotation

Robot Modeling and Control - изображение 129

If A = R z, θrelative to the frame o 0 x 0 y 0 z 0, then, relative to frame o 1 x 1 y 1 z 1we have

In other words B is a rotation about the z 0axis but expressed relative to - фото 130

In other words, B is a rotation about the z 0-axis but expressed relative to the frame o 1 x 1 y 1 z 1. This notion will be useful below and in later sections.

2.4 Composition of Rotations

In this section we discuss the composition of rotations. It is important for subsequent chapters that the reader understand the material in this section thoroughly before moving on.

2.4.1 Rotation with Respect to the Current Frame

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Robot Modeling and Control»

Представляем Вашему вниманию похожие книги на «Robot Modeling and Control» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Robot Modeling and Control»

Обсуждение, отзывы о книге «Robot Modeling and Control» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x