Mark W. Spong - Robot Modeling and Control

Здесь есть возможность читать онлайн «Mark W. Spong - Robot Modeling and Control» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Robot Modeling and Control: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Robot Modeling and Control»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A New Edition Featuring Case Studies and Examples of the Fundamentals of Robot Kinematics, Dynamics, and Control In the 2nd Edition of
, students will cover the theoretical fundamentals and the latest technological advances in robot kinematics. With so much advancement in technology, from robotics to motion planning, society can implement more powerful and dynamic algorithms than ever before. This in-depth reference guide educates readers in four distinct parts; the first two serve as a guide to the fundamentals of robotics and motion control, while the last two dive more in-depth into control theory and nonlinear system analysis.
With the new edition, readers gain access to new case studies and thoroughly researched information covering topics such as: 
● Motion-planning, collision avoidance, trajectory optimization, and control of robots
● Popular topics within the robotics industry and how they apply to various technologies
● An expanded set of examples, simulations, problems, and case studies
● Open-ended suggestions for students to apply the knowledge to real-life situations
A four-part reference essential for both undergraduate and graduate students,
serves as a foundation for a solid education in robotics and motion planning.

Robot Modeling and Control — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Robot Modeling and Control», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

In this section we derive three ways in which an arbitrary rotation can be represented using only three independent quantities: the Euler anglerepresentation, the roll-pitch-yawrepresentation, and the axis-anglerepresentation.

2.5.1 Euler Angles

A common method of specifying a rotation matrix in terms of three independent quantities is to use the so-called Euler angles. Consider the fixed coordinate frame o 0 x 0 y 0 z 0and the rotated frame o 1 x 1 y 1 z 1shown in Figure 2.10. We can specify the orientation of the frame o 1 x 1 y 1 z 1relative to the frame o 0 x 0 y 0 z 0by three angles ( ϕ , θ , ψ ), known as Euler angles, and obtained by three successive rotations as follows. First rotate about the z -axis by the angle ϕ . Next rotate about the current y -axis by the angle θ . Finally rotate about the current z -axis by the angle ψ . In Figure 2.10, frame oaxayaza represents the new coordinate frame after the rotation by ϕ , frame obxbybzb represents the new coordinate frame after the rotation by θ , and frame o 1 x 1 y 1 z 1represents the final frame, after the rotation by ψ . Frames oaxayaza and obxbybzb are shown in the figure only to help visualize the rotations.

Figure 210 Euler angle representation In terms of the basic rotation matrices - фото 184

Figure 2.10 Euler angle representation.

In terms of the basic rotation matrices the resulting rotational transformation can be generated as the product

(2.27) The matrix RZYZ in Equation 227 is called the ZYZ Euler angle - фото 185

The matrix RZYZ in Equation ( 2.27) is called the ZYZ –Euler angle transformation.

The more important and more difficult problem is to determine for a particular R = ( rij ) the set of Euler angles ϕ , θ , and ψ , that satisfy

(2.28) for a matrix R SO 3 This problem will be important later when we address - фото 186

for a matrix RSO (3). This problem will be important later when we address the inverse kinematics problem for manipulators in Chapter 5.

To find a solution for this problem we break it down into two cases. First, suppose that not both of r 13, r 23are zero. Then from Equation ( 2.27) we deduce that s θ≠ 0, and hence that not both of r 31, r 32are zero. If not both r 13and r 23are zero, then r 33≠ ±1, and we have c θ= r 33, Robot Modeling and Control - изображение 187so

(2.29) or 230 where the function Atan2 is the twoargument arctangent - фото 188

or

(2.30) where the function Atan2 is the twoargument arctangent functiondefined in - фото 189

where the function Atan2 is the two-argument arctangent functiondefined in Appendix A.

If we choose the value for θ given by Equation ( 2.29), then s θ> 0, and

(2.31) Robot Modeling and Control - изображение 190

(2.32) Robot Modeling and Control - изображение 191

If we choose the value for θ given by Equation ( 2.30), then s θ< 0, and

(2.33) Robot Modeling and Control - изображение 192

(2.34) Robot Modeling and Control - изображение 193

Thus, there are two solutions depending on the sign chosen for θ .

If r 13= r 23= 0, then the fact that картинка 194is orthogonal implies that r 33= ±1, and that r 31= r 32= 0. Thus, has the form 235 If r 33 1 then c θ 1 and s θ 0 so that θ 0 In - фото 195has the form

(2.35) If r 33 1 then c θ 1 and s θ 0 so that θ 0 In this case Equation - фото 196

If r 33= 1, then c θ= 1 and s θ= 0, so that θ = 0. In this case, Equation ( 2.27) becomes

Thus the sum ϕ ψ can be determined as 236 Since only the sum ϕ ψ can - фото 197

Thus, the sum ϕ + ψ can be determined as

(2.36) Since only the sum ϕ ψ can be determined in this case there are infinitely - фото 198

Since only the sum ϕ + ψ can be determined in this case, there are infinitely many solutions. In this case, we may take ϕ = 0 by convention. If r 33= −1, then c θ= −1 and s θ= 0, so that θ = π . In this case Equation ( 2.27) becomes

(2.37) The solution is thus 238 As before there are infinitely many solutions - фото 199

The solution is thus

(2.38) As before there are infinitely many solutions 252 Roll Pitch Yaw Angles - фото 200

As before there are infinitely many solutions.

2.5.2 Roll, Pitch, Yaw Angles

A rotation matrix картинка 201can also be described as a product of successive rotations about the principal coordinate axes x 0, y 0, and z 0taken in a specific order. These rotations define the roll, pitch, and yawangles, which we shall also denote ϕ , θ , ψ , and which are shown in Figure 2.11.

Figure 211 Roll pitch and yaw angles We specify the order of rotation as x - фото 202

Figure 2.11 Roll, pitch, and yaw angles.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Robot Modeling and Control»

Представляем Вашему вниманию похожие книги на «Robot Modeling and Control» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Robot Modeling and Control»

Обсуждение, отзывы о книге «Robot Modeling and Control» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x