Mark W. Spong - Robot Modeling and Control

Здесь есть возможность читать онлайн «Mark W. Spong - Robot Modeling and Control» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Robot Modeling and Control: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Robot Modeling and Control»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A New Edition Featuring Case Studies and Examples of the Fundamentals of Robot Kinematics, Dynamics, and Control In the 2nd Edition of
, students will cover the theoretical fundamentals and the latest technological advances in robot kinematics. With so much advancement in technology, from robotics to motion planning, society can implement more powerful and dynamic algorithms than ever before. This in-depth reference guide educates readers in four distinct parts; the first two serve as a guide to the fundamentals of robotics and motion control, while the last two dive more in-depth into control theory and nonlinear system analysis.
With the new edition, readers gain access to new case studies and thoroughly researched information covering topics such as: 
● Motion-planning, collision avoidance, trajectory optimization, and control of robots
● Popular topics within the robotics industry and how they apply to various technologies
● An expanded set of examples, simulations, problems, and case studies
● Open-ended suggestions for students to apply the knowledge to real-life situations
A four-part reference essential for both undergraduate and graduate students,
serves as a foundation for a solid education in robotics and motion planning.

Robot Modeling and Control — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Robot Modeling and Control», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

We specify the order of rotation as xyz , in other words, first a yaw about x 0through an angle ψ , then pitch about the y 0by an angle θ , and finally roll about the z 0by an angle ϕ . 2Since the successive rotations are relative to the fixed frame, the resulting transformation matrix is given by

(2.39) Of course instead of yawpitchroll relative to the fixed frames we could also - фото 203

Of course, instead of yaw-pitch-roll relative to the fixed frames we could also interpret the above transformation as roll-pitch-yaw, in that order, each taken with respect to the current frame. The end result is the same matrix as in Equation ( 2.39).

The three angles ϕ , θ , and ψ can be obtained for a given rotation matrix using a method that is similar to that used to derive the Euler angles above.

2.5.3 Axis-Angle Representation

Rotations are not always performed about the principal coordinate axes. We are often interested in a rotation about an arbitrary axis in space. This provides both a convenient way to describe rotations, and an alternative parameterization for rotation matrices. Let k = ( kx , ky , kz ), expressed in the frame o 0 x 0 y 0 z 0, be a unit vector defining an axis. We wish to derive the rotation matrix картинка 204representing a rotation of θ about this axis.

There are several ways in which the matrix Robot Modeling and Control - изображение 205can be derived. One approach is to note that the rotational transformation Robot Modeling and Control - изображение 206will bring the world z -axis into alignment with the vector k . Therefore, a rotation about the axis k can be computed using a similarity transformation as

(2.40) Robot Modeling and Control - изображение 207

(2.41) From Figure 212we see that 242 243 - фото 208

From Figure 2.12we see that

(2.42) 243 Note that the final two equations follow from the fact that k is a - фото 209

(2.43) Note that the final two equations follow from the fact that k is a unit vector - фото 210

Note that the final two equations follow from the fact that k is a unit vector. Substituting Equations ( 2.42) and ( 2.43) into Equation ( 2.41), we obtain after some lengthy calculation (Problem 2–17)

(2.44) where v θ vers θ 1 c θ Figure 212 Rotation about an arbitrary axis In - фото 211

where v θ= vers θ = 1 − c θ.

Figure 212 Rotation about an arbitrary axis In fact any rotation matrix can - фото 212

Figure 2.12 Rotation about an arbitrary axis.

In fact, any rotation matrix картинка 213can be represented by a single rotation about a suitable axis in space by a suitable angle,

(2.45) картинка 214

where k is a unit vector defining the axis of rotation, and θ is the angle of rotation about k . The pair ( k , θ ) is called the axis-angle representationof картинка 215. Given an arbitrary rotation matrix with components rij the equivalent angle θ and equivalent axis k are given by - фото 216with components rij , the equivalent angle θ and equivalent axis k are given by the expressions

and 246 These equations can be obtained by direct manipulation of the - фото 217

and

(2.46) These equations can be obtained by direct manipulation of the entries of the - фото 218

These equations can be obtained by direct manipulation of the entries of the matrix given in Equation ( 2.44). The axis-angle representation is not unique since a rotation of − θ about − k is the same as a rotation of θ about k , that is,

(2.47) Robot Modeling and Control - изображение 219

If θ = 0 then картинка 220is the identity matrix and the axis of rotation is undefined.

Example 2.9.

Suppose is generated by a rotation of 90 about z 0followed by a rotation of 30 about - фото 221is generated by a rotation of 90° about z 0followed by a rotation of 30° about y 0followed by a rotation of 60° about x 0. Then

(2.48) We see that and hence the equivalent angle is given by Equation 246 as 249 - фото 222

We see that and hence the equivalent angle is given by Equation 246 as 249 The - фото 223and hence the equivalent angle is given by Equation (2.46) as

(2.49) The equivalent axis is given from Equation 246 as 250 The above - фото 224

The equivalent axis is given from Equation ( 2.46) as

(2.50) The above axisangle representation characterizes a given rotation by four - фото 225

The above axis-angle representation characterizes a given rotation by four quantities, namely the three components of the equivalent axis k and the equivalent angle θ . However, since the equivalent axis k is given as a unit vector only two of its components are independent. The third is constrained by the condition that k is of unit length. Therefore, only three independent quantities are required in this representation of a rotation We can represent the equivalent axisangle by a single vector r as 251 - фото 226. We can represent the equivalent axis-angle by a single vector r as

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Robot Modeling and Control»

Представляем Вашему вниманию похожие книги на «Robot Modeling and Control» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Robot Modeling and Control»

Обсуждение, отзывы о книге «Robot Modeling and Control» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x