Mark W. Spong - Robot Modeling and Control

Здесь есть возможность читать онлайн «Mark W. Spong - Robot Modeling and Control» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Robot Modeling and Control: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Robot Modeling and Control»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A New Edition Featuring Case Studies and Examples of the Fundamentals of Robot Kinematics, Dynamics, and Control In the 2nd Edition of
, students will cover the theoretical fundamentals and the latest technological advances in robot kinematics. With so much advancement in technology, from robotics to motion planning, society can implement more powerful and dynamic algorithms than ever before. This in-depth reference guide educates readers in four distinct parts; the first two serve as a guide to the fundamentals of robotics and motion control, while the last two dive more in-depth into control theory and nonlinear system analysis.
With the new edition, readers gain access to new case studies and thoroughly researched information covering topics such as: 
● Motion-planning, collision avoidance, trajectory optimization, and control of robots
● Popular topics within the robotics industry and how they apply to various technologies
● An expanded set of examples, simulations, problems, and case studies
● Open-ended suggestions for students to apply the knowledge to real-life situations
A four-part reference essential for both undergraduate and graduate students,
serves as a foundation for a solid education in robotics and motion planning.

Robot Modeling and Control — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Robot Modeling and Control», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

A set of basic homogeneous transformationsgenerating SE (3) is given by

(2.71) 272 273 for translation and rotation abo - фото 272

(2.72) 273 for translation and rotation about the x y z axes respectively - фото 273

(2.73) for translation and rotation about the x y z axes respectively The most - фото 274

for translation and rotation about the x , y , z -axes, respectively.

The most general homogeneous transformation that we will consider may be written now as

(2.74) In the above equation n nx ny nz is a vector representing the - фото 275

In the above equation n = ( nx , ny , nz ) is a vector representing the direction of x 1in the o 0 x 0 y 0 z 0frame, s = ( sx , sy , sz ) represents the direction of y 1, and a = ( ax , ay , az ) represents the direction of z 1. The vector d = ( dx , dy , dz ) represents the vector from the origin o 0to the origin o 1expressed in the frame o 0 x 0 y 0 z 0. The rationale behind the choice of letters n , s , and a is explained in Chapter 3.

The same interpretation regarding composition and ordering of transformations holds for 4 × 4 homogeneous transformations as for 3 × 3 rotations. Given a homogeneous transformation H 0 1relating two frames, if a second rigid motion, represented by HSE (3) is performed relative to the current frame, then

Robot Modeling and Control - изображение 276

whereas if the second rigid motion is performed relative to the fixed frame, then

Robot Modeling and Control - изображение 277

Example 2.10.

The homogeneous transformation matrix картинка 278that represents a rotation by angle α about the current x -axis followed by a translation of b units along the current x -axis, followed by a translation of d units along the current z -axis, followed by a rotation by angle θ about the current z -axis, is given by

262 Exponential Coordinates for General Rigid Motions Just as we represented - фото 279

2.6.2 Exponential Coordinates for General Rigid Motions

Just as we represented rotation matrices as exponentials of skew-symmetric matrices, we can also represent homogeneous transformations as exponentials using so-called twists.

Definition 2.3.

Let v and k be vectors in Robot Modeling and Control - изображение 280with k a unit vector. A twist ξ defined by k and v is the 4 × 4 matrix

(2.75) Robot Modeling and Control - изображение 281

We define se (3) as

(2.76) se 3 is the vector space of twists and a similar argument as before in - фото 282

se (3) is the vector space of twists, and a similar argument as before in Section 2.5.4 can be used to show that, given any twist ξ ∈ se (3) and angle картинка 283, the matrix exponential of ξ θ is an element of SE (3) and, conversely, every homogeneous transformation (rigid motion) in SE (3) can be expressed as the exponential of a twist. We omit the details here.

2.7 Chapter Summary

In this chapter, we have seen how matrices in SE ( n ) can be used to represent the relative position and orientation of two coordinate frames for n = 2, 3. We have adopted a notional convention in which a superscript is used to indicate a reference frame. Thus, the notation картинка 284represents the coordinates of the point p relative to frame 0.

The relative orientation of two coordinate frames can be specified by a rotation matrix, RSO ( n ), with n = 2, 3. In two dimensions, the orientation of frame 1 with respect to frame 0 is given by

in which θ is the angle between the two coordinate frames In the - фото 285

in which θ is the angle between the two coordinate frames. In the three-dimensional case, the rotation matrix is given by

In each case the columns of the rotation matrix are obtained by projecting an - фото 286

In each case, the columns of the rotation matrix are obtained by projecting an axis of the target frame (in this case, frame 1) onto the coordinate axes of the reference frame (in this case, frame 0).

The set of n × n rotation matrices is known as the special orthogonal group of order n , and is denoted by SO ( n ). An important property of these matrices is that R − 1= RT for any RSO ( n ).

Rotation matrices can be used to perform coordinate transformations between frames that differ only in orientation. We derived rules for the composition of rotational transformations as

картинка 287

for the case where the second transformation, R , is performed relative to the current frame and

картинка 288

for the case where the second transformation, R , is performed relative to the fixed frame.

In the three-dimensional case, a rotation matrix can be parameterized using three angles. A common convention is to use the Euler angles ( ϕ , θ , ψ ), which correspond to successive rotations about the z , y , and z -axes. The corresponding rotation matrix is given by

Roll pitch and yaw angles are similar except that the successive rotations - фото 289

Roll, pitch, and yaw angles are similar, except that the successive rotations are performed with respect to the fixed, world frame instead of being performed with respect to the current frame.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Robot Modeling and Control»

Представляем Вашему вниманию похожие книги на «Robot Modeling and Control» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Robot Modeling and Control»

Обсуждение, отзывы о книге «Robot Modeling and Control» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x