Mark W. Spong - Robot Modeling and Control

Здесь есть возможность читать онлайн «Mark W. Spong - Robot Modeling and Control» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Robot Modeling and Control: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Robot Modeling and Control»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A New Edition Featuring Case Studies and Examples of the Fundamentals of Robot Kinematics, Dynamics, and Control In the 2nd Edition of
, students will cover the theoretical fundamentals and the latest technological advances in robot kinematics. With so much advancement in technology, from robotics to motion planning, society can implement more powerful and dynamic algorithms than ever before. This in-depth reference guide educates readers in four distinct parts; the first two serve as a guide to the fundamentals of robotics and motion control, while the last two dive more in-depth into control theory and nonlinear system analysis.
With the new edition, readers gain access to new case studies and thoroughly researched information covering topics such as: 
● Motion-planning, collision avoidance, trajectory optimization, and control of robots
● Popular topics within the robotics industry and how they apply to various technologies
● An expanded set of examples, simulations, problems, and case studies
● Open-ended suggestions for students to apply the knowledge to real-life situations
A four-part reference essential for both undergraduate and graduate students,
serves as a foundation for a solid education in robotics and motion planning.

Robot Modeling and Control — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Robot Modeling and Control», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(2.51) Note since k is a unit vector that the length of the vector r is the - фото 227

Note, since k is a unit vector, that the length of the vector r is the equivalent angle θ and the direction of r is the equivalent axis k .

One should be careful to note that the representation in Equation ( 2.51) does not mean that two axis-angle representations may be combined using standard rules of vector algebra, as doing so would imply that rotations commute which, as we have seen, is not true in general.

2.5.4 Exponential Coordinates

In this section we introduce the so-called exponential coordinatesand give an alternate description of the axis-angle transformation ( 2.44). We showed above in Section 2.5.3 that any rotation matrix RSO (3) can be expressed as an axis-angle matrix R k, θusing Equation ( 2.44). The components of the vector картинка 228are called exponential coordinatesof R .

To see why this terminology is used, we first recall from Appendix B the definition of so (3) as the set of 3 × 3 skew-symmetricmatrices S satisfying

(2.52) Robot Modeling and Control - изображение 229

For Robot Modeling and Control - изображение 230let S ( k ) be the skew-symmetric matrix

(2.53) and let e Skθbe the matrix exponential as defined in Appendix B 254 Then - фото 231

and let e S(k)θbe the matrix exponential as defined in Appendix B

(2.54) Then we have the following proposition which gives an important relationship - фото 232

Then we have the following proposition, which gives an important relationship between SO (3) and so (3).

Proposition 2.1

The matrix e S(k)θis an element of SO (3) for any S ( k ) ∈ so (3) and, conversely, every element of SO (3) can be expressed as the exponential of an element of so (3).

Proof:To show that the matrix e S(k)θis in SO (3) we need to show that e S(k)θis an orthogonal matrix with determinant equal to + 1. To show this we rely on the following properties that hold for any n × n matrices A and B

1

2 If the n × n matrices A and B commute, i.e., AB = BA, then eAeB = e(A + B)

3 The determinant , where tr(A) is the trace of A.

The first two properties above can be shown by direct calculation using the series expansion ( 2.54) for eA . The third property follows from the Jacobi Identity(Appendix B). Now, since ST = − S , if S is skew-symmetric, then S and ST clearly commute. Therefore, with S = S ( k θ ) ∈ so (3), we have

(2.55) Robot Modeling and Control - изображение 233

which shows that e S(kθ)is an orthogonal matrix. Also

(2.56) Robot Modeling and Control - изображение 234

since the trace of a skew-symmetric matrix is zero. Thus e S(kθ)∈ SO (3) for S ( k θ ) ∈ so (3).

The converse, namely, that every element of SO (3) is the exponential of an element of so (3), follows from the axis-angle representation of R and Rodrigues’ formula, which we derive next.

Rodrigues’ Formula

Given the skew-symmetric matrix S ( k ) it is easy to show that S 3( k ) = − S ( k ), from which it follows that S 4( k ) = − S 2( k ), etc. Thus the series expansion for e S(k)θreduces to

the latter equality following from the series expansion of the sine and cosine - фото 235

the latter equality following from the series expansion of the sine and cosine functions. The expression

(2.57) is known as Rodrigues formula It can be shown by direct calculation that the - фото 236

is known as Rodrigues’ formula. It can be shown by direct calculation that the angle-axis representation for R k, θgiven by Equation ( 2.44) and Rodrigues’ formula in Equation ( 2.57) are identical.

Remark 2.1.

The above results show that the matrix exponential function defines a one-to-one mapping from so(3) onto SO(3). Mathematically, so(3) is a Lie algebra and SO (3) is a Lie group.

2.6 Rigid Motions

We have now seen how to represent both positions and orientations. We combine these two concepts in this section to define a rigid motionand, in the next section, we derive an efficient matrix representation for rigid motions using the notion of homogeneous transformation.

Definition 2.2.

A rigid motion is an ordered pair ( d , R ) where картинка 237 and RSO (3). The group of all rigid motions is known as the special Euclidean group and is denoted by SE (3). We see then that Robot Modeling and Control - изображение 238.

A rigid motion is a pure translation together with a pure rotation. 3Let картинка 239be the rotation matrix that specifies the orientation of frame o 1 x 1 y 1 z 1with respect to o 0 x 0 y 0 z 0, and картинка 240be the vector from the origin of frame o 0 x 0 y 0 z 0to the origin of frame o 1 x 1 y 1 z 1. Suppose the point картинка 241is rigidly attached to coordinate frame o 1 x 1 y 1 z 1, with local coordinates картинка 242. We can express the coordinates of Robot Modeling and Control - изображение 243with respect to frame o 0 x 0 y 0 z 0using

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Robot Modeling and Control»

Представляем Вашему вниманию похожие книги на «Robot Modeling and Control» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Robot Modeling and Control»

Обсуждение, отзывы о книге «Robot Modeling and Control» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x