Mark W. Spong - Robot Modeling and Control

Здесь есть возможность читать онлайн «Mark W. Spong - Robot Modeling and Control» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Robot Modeling and Control: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Robot Modeling and Control»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A New Edition Featuring Case Studies and Examples of the Fundamentals of Robot Kinematics, Dynamics, and Control In the 2nd Edition of
, students will cover the theoretical fundamentals and the latest technological advances in robot kinematics. With so much advancement in technology, from robotics to motion planning, society can implement more powerful and dynamic algorithms than ever before. This in-depth reference guide educates readers in four distinct parts; the first two serve as a guide to the fundamentals of robotics and motion control, while the last two dive more in-depth into control theory and nonlinear system analysis.
With the new edition, readers gain access to new case studies and thoroughly researched information covering topics such as: 
● Motion-planning, collision avoidance, trajectory optimization, and control of robots
● Popular topics within the robotics industry and how they apply to various technologies
● An expanded set of examples, simulations, problems, and case studies
● Open-ended suggestions for students to apply the knowledge to real-life situations
A four-part reference essential for both undergraduate and graduate students,
serves as a foundation for a solid education in robotics and motion planning.

Robot Modeling and Control — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Robot Modeling and Control», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
which can be combined to obtain the rotation matrix Thus the columns of - фото 62

which can be combined to obtain the rotation matrix

Thus the columns of specify the direction cosines of the coordinate axes of o - фото 63

Thus, the columns of картинка 64specify the direction cosines of the coordinate axes of o 1 x 1 y 1relative to the coordinate axes of o 0 x 0 y 0. For example, the first column ( xx 0, xy 0) of картинка 65specifies the direction of x 1relative to the frame o 0 x 0 y 0. Note that the right-hand sides of these equations are defined in terms of geometric entities, and not in terms of their coordinates. Examining Figure 2.2it can be seen that this method of defining the rotation matrix by projection gives the same result as we obtained in Equation ( 2.1).

If we desired instead to describe the orientation of frame o 0 x 0 y 0with respect to the frame o 1 x 1 y 1(that is, if we desired to use the frame o 1 x 1 y 1as the reference frame), we would construct a rotation matrix of the form

Robot Modeling and Control - изображение 66

Since the dot product is commutative, (that is, xi · yj = yj · xi ), we see that

Robot Modeling and Control - изображение 67

In a geometric sense, the orientation of o 0 x 0 y 0with respect to the frame o 1 x 1 y 1is the inverse of the orientation of o 1 x 1 y 1with respect to the frame o 0 x 0 y 0. Algebraically, using the fact that coordinate axes are mutually orthogonal, it can readily be seen that

Robot Modeling and Control - изображение 68

The above relationship implies that Robot Modeling and Control - изображение 69and it is easily shown that the column vectors of картинка 70are of unit length and mutually orthogonal (Problem 2–4). Thus Robot Modeling and Control - изображение 71is an orthogonal matrix. It also follows from the above that (Problem 2–5) Robot Modeling and Control - изображение 72. If we restrict ourselves to right-handed coordinate frames, as defined in Appendix B, then Robot Modeling and Control - изображение 73(Problem 2–5).

More generally, these properties extend to higher dimensions, which can be formalized as the so-called special orthogonal group of order n .

Definition 2.1.

The special orthogonal group of order n , denoted SO ( n ), is the set of n × n real-valued matrices

(2.2) Thus for any the following properties hold The columns and therefore the - фото 74

Thus, for any картинка 75 the following properties hold

The columns (and therefore the rows) of are mutually orthogonal

Each column (and therefore each row) of is a unit vector

The special case , SO (2), respectively , SO (3), is called the rotation group of order 2, respectively 3.

To provide further geometric intuition for the notion of the inverse of a rotation matrix, note that in the two-dimensional case, the inverse of the rotation matrix corresponding to a rotation by angle θ can also be easily computed simply by constructing the rotation matrix for a rotation by the angle − θ :

222 Rotations in Three Dimensions The projection technique described above - фото 76

2.2.2 Rotations in Three Dimensions

The projection technique described above scales nicely to the three-dimensional case. In three dimensions, each axis of the frame o 1 x 1 y 1 z 1is projected onto coordinate frame o 0 x 0 y 0 z 0. The resulting rotation matrix RSO (3) is given by

As was the case for rotation matrices in two dimensions matrices in this form - фото 77

As was the case for rotation matrices in two dimensions, matrices in this form are orthogonal, with determinant equal to 1 and therefore elements of SO (3).

Example 2.1.

Suppose the frame o 1 x 1 y 1 z 1is rotated through an angle θ about the z 0-axis, and we wish to find the resulting transformation matrix картинка 78. By convention, the right hand rule (see Appendix B) defines the positive sense for the angle θ to be such that rotation by θ about the z -axis would advance a right-hand threaded screw along the positive z -axis.

From Figure 2.3we see that

and while all other dot products are zero Thus the rotation matrix - фото 79

and

картинка 80

while all other dot products are zero. Thus, the rotation matrix has a particularly simple form in this case namely 23 - фото 81has a particularly simple form in this case, namely

(2.3) Figure 23 Rotation about z 0by an angle θ The rotation matrix given in - фото 82

Figure 23 Rotation about z 0by an angle θ The rotation matrix given in - фото 83

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Robot Modeling and Control»

Представляем Вашему вниманию похожие книги на «Robot Modeling and Control» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Robot Modeling and Control»

Обсуждение, отзывы о книге «Robot Modeling and Control» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x