M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems

Здесь есть возможность читать онлайн «M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Kinematics of General Spatial Mechanical Systems: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Kinematics of General Spatial Mechanical Systems»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Guide to kinematic theory for the analysis of spatial mechanisms and manipulators Kinematics of General Spatial Mechanical Systems Comprehensive in scope, the book covers topics ranging from rather elementary subjects such as spatial mechanisms with single degree of freedom to more advanced topics such as serial manipulators including redundant and deficient ones, parallel manipulators, and non-holonomic spatial cam mechanisms that involve rolling without slipping motions. The author presents an effective and accessible symbolic manipulation method making it possible to obtain neat and transparent expressions that describe the systems showing all the kinematic details. Such expressions readily lead to analytical or semi-analytical solutions. They also facilitate the identification and analysis of the multiplicities and singularities. 
This all-time beneficial book:
Provides an easy-to-use systematic formulation method that is applicable to all sorts of spatial machanisms and manipulators Introduces a symbolic manipulation method, which is effective and straightforward to use, so that kinematic relationships can be simplified by using all the special geometric features of the system Offers an accessible format that uses a systematic and easy-to-conceive notation which has proven successful Presents content written by an author who is a renowned expert in the field Includes an accompanying website Written for academicians, students, engineers, computer scientists and any other people working in the area of spatial mechanisms and manipulators,
provides a clear notation, formulation, and a logical approach to the topic and offers a fresh presentation of challenging material.

Kinematics of General Spatial Mechanical Systems — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Kinematics of General Spatial Mechanical Systems», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Note that Eq. (3.203)is actually valid for any pivot point whatsoever. Therefore, the HTM of a pure rotational displacement does not actually need a subscript and thus it may be denoted even in the following simplest form.

(3.204) Note also that Eqs 3203and 3204verify the wellknown fact that a - фото 1553

Note also that Eqs. (3.203)and (3.204)verify the well‐known fact that a rotation operator is indifferent to the location of the pivot point.

1 (e) HTM of a Pure Translation

A pure translational displacement of картинка 1554with respect to картинка 1555or a pure translational displacement of картинка 1556with respect to картинка 1557can be expressed by one of the following HTM expressions, depending on the selected one of картинка 1558and in which the translation vector is observed 3205 3206 - фото 1559, in which the translation vector is observed 3205 3206 1 f Observation in a - фото 1560is observed.

(3.205) 3206 1 f Observation in a Third Different Reference Frame In general - фото 1561

(3.206) 1 f Observation in a Third Different Reference Frame In general the point P - фото 1562

1 (f) Observation in a Third Different Reference Frame

In general, the point P and the reference frames картинка 1563and картинка 1564may be observed in a different reference frame картинка 1565. In such a case, considering that the vectors картинка 1566and картинка 1567are conveniently resolved in and Eq 3175can be written as follows 3207 The above a - фото 1568and Eq 3175can be written as follows 3207 The above affine relationship - фото 1569, Eq. (3.175)can be written as follows:

(3.207) The above affine relationship can be expressed in the following homogeneous - фото 1570

The above affine relationship can be expressed in the following homogeneous form.

(3.208) In Eq 3208 the coefficient matrix on the lefthand side is the HTM of a - фото 1571

In Eq. (3.208), the coefficient matrix on the left‐hand side is the HTM of a pure rotation from картинка 1572to картинка 1573and the coefficient matrix on the right‐hand side is the HTM that expresses the overall rotation from картинка 1574to картинка 1575together with the translation from A to B as observed in Thus Eq 3208can be written compactly as 3209 In case of a pure - фото 1576. Thus, Eq. (3.208)can be written compactly as

(3.209) In case of a pure rotation with B A Eq 3209takes the following form - фото 1577

In case of a pure rotation with B = A , Eq. (3.209)takes the following form that involves two pure‐rotation HTMs.

(3.210) In case of a pure translation with b a Eq 3209takes the following form - фото 1578

In case of a pure translation with b = a , Eq. (3.209)takes the following form.

(3.211) As another point of concern note that Eq 3209can also be written as - фото 1579

As another point of concern, note that Eq. (3.209)can also be written as

(3.212) In Eq 3212 3213 When Eqs 3212and 3193are compared it is seen - фото 1580

In Eq. (3.212),

(3.213) When Eqs 3212and 3193are compared it is seen that 3214 Equation - фото 1581

When Eqs. (3.212)and (3.193)are compared, it is seen that

(3.214) Equation 3214shows how an HTM can be adapted to the selected observation - фото 1582

Equation (3.214)shows how an HTM can be adapted to the selected observation frame.

3.9.6 Example 3.2

Figure 3.4shows the initial and final positions of a cube. The length of each edge of the cube is L = 10 cm. In the first position of the cube, the edge BC coincides with the first axis of the base frame картинка 1583so that OC = 20 cm. In the second position of the cube, the edge GF coincides with the second axis of картинка 1584so that OG = 15 cm. The reference frame that is fixed to the cube is Kinematics of General Spatial Mechanical Systems - изображение 1585. It is oriented in such a way that Kinematics of General Spatial Mechanical Systems - изображение 1586, Kinematics of General Spatial Mechanical Systems - изображение 1587, and Kinematics of General Spatial Mechanical Systems - изображение 1588.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Kinematics of General Spatial Mechanical Systems»

Представляем Вашему вниманию похожие книги на «Kinematics of General Spatial Mechanical Systems» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Kinematics of General Spatial Mechanical Systems»

Обсуждение, отзывы о книге «Kinematics of General Spatial Mechanical Systems» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x