M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems

Здесь есть возможность читать онлайн «M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Kinematics of General Spatial Mechanical Systems: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Kinematics of General Spatial Mechanical Systems»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Guide to kinematic theory for the analysis of spatial mechanisms and manipulators Kinematics of General Spatial Mechanical Systems Comprehensive in scope, the book covers topics ranging from rather elementary subjects such as spatial mechanisms with single degree of freedom to more advanced topics such as serial manipulators including redundant and deficient ones, parallel manipulators, and non-holonomic spatial cam mechanisms that involve rolling without slipping motions. The author presents an effective and accessible symbolic manipulation method making it possible to obtain neat and transparent expressions that describe the systems showing all the kinematic details. Such expressions readily lead to analytical or semi-analytical solutions. They also facilitate the identification and analysis of the multiplicities and singularities. 
This all-time beneficial book:
Provides an easy-to-use systematic formulation method that is applicable to all sorts of spatial machanisms and manipulators Introduces a symbolic manipulation method, which is effective and straightforward to use, so that kinematic relationships can be simplified by using all the special geometric features of the system Offers an accessible format that uses a systematic and easy-to-conceive notation which has proven successful Presents content written by an author who is a renowned expert in the field Includes an accompanying website Written for academicians, students, engineers, computer scientists and any other people working in the area of spatial mechanisms and manipulators,
provides a clear notation, formulation, and a logical approach to the topic and offers a fresh presentation of challenging material.

Kinematics of General Spatial Mechanical Systems — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Kinematics of General Spatial Mechanical Systems», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(3.175) In Eq 3175 is the bias term of the affine transformation It represents - фото 1486

In Eq. (3.175), картинка 1487is the bias term of the affine transformation. It represents the translational displacement of картинка 1488with respect to картинка 1489. As for картинка 1490, it represents the rotational displacement of картинка 1491with respect to картинка 1492.

If the point P is observed in several different reference frames such as картинка 1493, картинка 1494, картинка 1495, …, then the following affine transformation equations can be written between the - фото 1496, then the following affine transformation equations can be written between the successive reference frames.

(3.176) 3177 3178 - фото 1497

(3.177) 3178 3179 - фото 1498

(3.178) 3179 As for the overall affine transformation equation - фото 1499

3179 As for the overall affine transformation equation it can be written - фото 1500

(3.179) As for the overall affine transformation equation it can be written as 3180 - фото 1501

As for the overall affine transformation equation, it can be written as

(3.180) Upon successive substitutions the preceding equations lead to the following - фото 1502

Upon successive substitutions, the preceding equations lead to the following combined equations.

(3.181) 3182 3183 Equations 3180and 3183sh - фото 1503

(3.182) 3183 Equations 3180and 3183show the necessity of using the following - фото 1504

(3.183) Equations 3180and 3183show the necessity of using the following set of - фото 1505

Equations (3.180)and (3.183)show the necessity of using the following set of equations in order to obtain the combined rotation and translation matrices.

(3.184) 3185 394 Homogeneous Coordinate Transformation Between Two Reference - фото 1506

(3.185) 394 Homogeneous Coordinate Transformation Between Two Reference Frames - фото 1507

3.9.4 Homogeneous Coordinate Transformation Between Two Reference Frames

Referring to Eqs. (3.184)and (3.185), it is seen that the result of a combination of several affine transformations necessitates carrying out a considerable number of addition and multiplication operations involving 3 × 1 and 3 × 3 matrices. However, a large number of matrix operations is not desirable of course especially from the viewpoint of computational efficiency.

On the other hand, if the transformations are expressed homogeneously, the number of necessary matrix operations reduces considerably to such an extent that only a minimal number of multiplications are required without any additions. However, this reduction in the number of operations necessitates the introduction of 4 × 1 and 4 × 4 augmented matrices in return. Even so, the advantage of the reduction in the number of operations emphatically overcomes the disadvantage of the increased dimension of the matrices.

The affine transformation expressed by Eq. (3.175)can be converted into a homogeneous transformation as explained below.

Equation (3.175)can be combined with the trivial equation 1 = 1 in order to set up the following system of equations.

(3.186) The preceding system of equations can be written as the following single matrix - фото 1508

The preceding system of equations can be written as the following single matrix equation.

(3.187) Equation 3187suggests the following definitions is defined as the - фото 1509

Equation (3.187)suggests the following definitions.

картинка 1510is defined as the augmented position matrix of P in Kinematics of General Spatial Mechanical Systems - изображение 1511. It is a 4 × 1 matrix formed as

(3.188) Kinematics of General Spatial Mechanical Systems - изображение 1512

картинка 1513is defined as the augmented position matrix of P in Kinematics of General Spatial Mechanical Systems - изображение 1514. It is a 4 × 1 matrix formed as

(3.189) Kinematics of General Spatial Mechanical Systems - изображение 1515

картинка 1516is defined as the homogeneous transformation matrix (HTM) between and It is a 4 4 matrix formed as 3190 Note that the HTM - фото 1517and It is a 4 4 matrix formed as 3190 Note that the HTM defined above has - фото 1518. It is a 4 × 4 matrix formed as

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Kinematics of General Spatial Mechanical Systems»

Представляем Вашему вниманию похожие книги на «Kinematics of General Spatial Mechanical Systems» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Kinematics of General Spatial Mechanical Systems»

Обсуждение, отзывы о книге «Kinematics of General Spatial Mechanical Systems» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x