M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems

Здесь есть возможность читать онлайн «M. Kemal Ozgoren - Kinematics of General Spatial Mechanical Systems» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Kinematics of General Spatial Mechanical Systems: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Kinematics of General Spatial Mechanical Systems»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Guide to kinematic theory for the analysis of spatial mechanisms and manipulators Kinematics of General Spatial Mechanical Systems Comprehensive in scope, the book covers topics ranging from rather elementary subjects such as spatial mechanisms with single degree of freedom to more advanced topics such as serial manipulators including redundant and deficient ones, parallel manipulators, and non-holonomic spatial cam mechanisms that involve rolling without slipping motions. The author presents an effective and accessible symbolic manipulation method making it possible to obtain neat and transparent expressions that describe the systems showing all the kinematic details. Such expressions readily lead to analytical or semi-analytical solutions. They also facilitate the identification and analysis of the multiplicities and singularities. 
This all-time beneficial book:
Provides an easy-to-use systematic formulation method that is applicable to all sorts of spatial machanisms and manipulators Introduces a symbolic manipulation method, which is effective and straightforward to use, so that kinematic relationships can be simplified by using all the special geometric features of the system Offers an accessible format that uses a systematic and easy-to-conceive notation which has proven successful Presents content written by an author who is a renowned expert in the field Includes an accompanying website Written for academicians, students, engineers, computer scientists and any other people working in the area of spatial mechanisms and manipulators,
provides a clear notation, formulation, and a logical approach to the topic and offers a fresh presentation of challenging material.

Kinematics of General Spatial Mechanical Systems — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Kinematics of General Spatial Mechanical Systems», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(3.190) Note that the HTM defined above has three major partitions Its invariant - фото 1519

Note that the HTM defined above has three major partitions. Its invariant trivial partition is its last row, which is Its rotational partition is the 3 3 matrix and its translational partition - фото 1520. Its rotational partition is the 3 × 3 matrix картинка 1521and its translational partition is the 3 × 1 matrix картинка 1522.

By using the preceding definitions, Eq. (3.187)can be written in the following compact and linear form, which is known as the homogeneous transformation equation .

(3.191) Kinematics of General Spatial Mechanical Systems - изображение 1523

If there are several different reference frames such as картинка 1524, картинка 1525, картинка 1526, …, then the following successive homogeneous transformation equations can be - фото 1527, then the following successive homogeneous transformation equations can be written.

(3.192) Kinematics of General Spatial Mechanical Systems - изображение 1528

As for the overall homogeneous transformation equation, it can be written as

(3.193) Kinematics of General Spatial Mechanical Systems - изображение 1529

Upon successive substitutions, the preceding equations lead to the following equation for the combined HTM.

(3.194) As noticed above the expression of the overall HTM given by Eq - фото 1530

As noticed above, the expression of the overall HTM given by Eq. (3.194)involves only matrix multiplications and thus it is much more compact and easier to compute as compared with the accumulation of the consecutive expressions given by Eqs. (3.184)and (3.185)for the rotation matrix and the bias term of the overall affine transformation expressed by Eq. 3.180.

3.9.5 Mathematical Properties of the Homogeneous Transformation Matrices

1 (a) Determinant of an HTM

Referring to Eq. (3.190), it can be shown that

(3.195) 1 b Inverse of an HTM Equation 3191can be written in the following two - фото 1531

1 (b) Inverse of an HTM

Equation (3.191)can be written in the following two ways: first by interchanging картинка 1532and Kinematics of General Spatial Mechanical Systems - изображение 1533; and then by inverting Kinematics of General Spatial Mechanical Systems - изображение 1534.

(3.196) Kinematics of General Spatial Mechanical Systems - изображение 1535

(3.197) Equations 3196and 3197imply that the inverse of can be taken as follows - фото 1536

Equations (3.196)and (3.197)imply that the inverse of can be taken as follows 3198 1 c Decomposition of an HTM The overall - фото 1537can be taken as follows:

(3.198) 1 c Decomposition of an HTM The overall displacement of with respect to - фото 1538

1 (c) Decomposition of an HTM

The overall displacement of картинка 1539with respect to consists of translational and rotational displacements So it can be described - фото 1540consists of translational and rotational displacements. So, it can be described in the following two alternative ways.

(3.199) 3200 According to the above descriptions can be factor - фото 1541

(3.200) According to the above descriptions can be factorized as shown below 1 i - фото 1542

According to the above descriptions, картинка 1543can be factorized as shown below.

1 (i) First translation and then rotation:(3.201)

2 (ii) First rotation and then translation:(3.202)

The factorizations described above suggest the following definitions of pure rotational and translational displacements and the associated homogeneous transformation matrices.

1 (d) HTM of a Pure Rotation

A pure rotational displacement of картинка 1544with respect to картинка 1545or a pure rotational displacement of картинка 1546with respect to can be achieved by pivoting about either of the origins A and B In either - фото 1547can be achieved by pivoting about either of the origins A and B . In either case, the resultant HTM will be the same. That is,

(3.203) In Eq 3203 and are the abbreviated symbols that stand for - фото 1548

In Eq. (3.203), картинка 1549and картинка 1550are the abbreviated symbols that stand for картинка 1551and картинка 1552.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Kinematics of General Spatial Mechanical Systems»

Представляем Вашему вниманию похожие книги на «Kinematics of General Spatial Mechanical Systems» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Kinematics of General Spatial Mechanical Systems»

Обсуждение, отзывы о книге «Kinematics of General Spatial Mechanical Systems» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x