Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3

Здесь есть возможность читать онлайн «Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanics, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanics, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications.<br> <br> * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë<br> * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly<br> * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications<br> <br> Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms.<br> <br> Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics.<br> <br> Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.<br>

Quantum Mechanics, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanics, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

or, if initially the state | ui 〉 is not occupied:

(A-26) Quantum Mechanics Volume 3 - изображение 45

Relations (A-22)and (A-23)are also valid for fermions, with the usual condition that all occupation numbers should be equal to 0 or 1 ; otherwise, the relations amount to 0 = 0.

Comment:

To use relation (A-25)when the state | ui 〉 is already occupied but not listed in the first position, we first have to bring it there; if it requires an odd permutation, a change of sign will occur. For example:

(A-27) Quantum Mechanics Volume 3 - изображение 46

For fermions, the operators a and a †therefore act on the individual state that is listed in the first position in the N -particle ket; a destroys the first state in the list, and at creates a new state placed at the beginning of the list. Forgetting this could lead to errors in sign.

A-4. Occupation number operators (bosons and fermions)

Consider the operator картинка 47defined by:

(A-28) картинка 48

and its action on a Fock state. For bosons, if we apply successively formulas (A-22)and (A-16), we see that this operator yields the same Fock state, but multiplied by its occupation number ni . For fermions, if | ui 〉 is empty in the Fock state, relation (A-26)shows that the action of the operator картинка 49yields zero. If the state | ui 〉 is already occupied, we must first permute the states to bring | ui 〉 to the first position, which may eventually change the sign in front of the Fock space ket. The successive application on this ket of (A-25)and (A-19)shows that the action of the operator картинка 50leaves this ket unchanged; we then move the state | ui 〉 back to its initial position, which may introduce a second change in sign, canceling the first one. We finally obtain for fermions the same result as for bosons, except that the ni can only take the values 1 and 0. In both cases the Fock states are the eigenvectors of the operator картинка 51with the occupation numbers as eigenvalues; consequently, this operator is named the “ occupation number operator of the state | ui 〉”. The operator associated with the total number of particles is simply the sum A29 A5 - фото 52associated with the total number of particles is simply the sum:

(A-29) A5 Commutation and anticommutation relations Creation and annihilation - фото 53

A-5. Commutation and anticommutation relations

Creation and annihilation operators have very simple commutation (for the bosons) and anticommutation (for the fermions) properties, which make them easy tools for taking into account the symmetrization or antisymmetrization of the state vectors.

To simplify the notation, each time the equations refer to a single basis of individual states | ui 〉, we shall write ai instead of aui . If, however, it can lead to ambiguity, we will return to the full notation.

A-5-a. Bosons: commutation relations

Consider, for bosons, the two operators картинка 54and If both subscripts i and j are different they correspond to orthogonal - фото 55. If both subscripts i and j are different, they correspond to orthogonal states | ui 〉 and | uj 〉. Using twice (A-16)then yields:

(A-30) Changing the order of the operators yields the same result As the Fock states - фото 56

Changing the order of the operators yields the same result. As the Fock states form a basis, we can deduce that the commutator of картинка 57and картинка 58is zero if ij . In the same way, it is easy to show that both operator products aiaj and ajai acting on the same ket yield the same result (a ket having two occupation numbers lowered by 1); ai and aj thus commute if ij . Finally the same procedure allows showing that ai and картинка 59commute if ij . Now, if i = j , we must evaluate the commutator of ai and Let us apply A16and A22successively first in that order and then in - фото 60. Let us apply (A-16)and (A-22)successively, first in that order, and then in the reverse order:

(A-31) The commutator of ai and is therefore equal to 1 for all the values of the - фото 61

The commutator of ai and is therefore equal to 1 for all the values of the subscript i All the - фото 62is therefore equal to 1 for all the values of the subscript i . All the previous results are summarized in three equalities valid for bosons:

(A-32) A5b Fermions anticommutation relations For fermions let us first assume - фото 63

A-5-b. Fermions: anticommutation relations

For fermions, let us first assume that the subscripts i and j are different. The successive action of картинка 64and on an occupation number ket only yields a nonzero ket if ni nj 0 using - фото 65on an occupation number ket only yields a non-zero ket if ni = nj = 0; using twice (A-18)leads to:

(A-33) but if we change the order A34 Consequently the sign change that goes - фото 66

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanics, Volume 3»

Представляем Вашему вниманию похожие книги на «Quantum Mechanics, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanics, Volume 3»

Обсуждение, отзывы о книге «Quantum Mechanics, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x