Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3

Здесь есть возможность читать онлайн «Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanics, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanics, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications.<br> <br> * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë<br> * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly<br> * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications<br> <br> Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms.<br> <br> Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics.<br> <br> Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.<br>

Quantum Mechanics, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanics, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

which amounts to (as expected):

(A-54) Furthermore it is straightforward to show that the creation operators commute - фото 95

Furthermore, it is straightforward to show that the creation operators commute (or anticommute), as do the annihilation operators.

Equivalence of the two bases

We have not yet shown the complete equivalence of the two bases, which can be done following two different approaches. In the first one, we use (A-51)and (A-52)to define the creation and annihilation operators in the new basis. The associated Fock states are defined by replacing the картинка 96by the картинка 97in relations (A-17)for the bosons, and (A-18)for the fermions. We then have to show that these new Fock states are still related to the states with numbered particles as in (A-18)for bosons, and (A-10)for fermions. This will establish the complete equivalence of the two bases.

We shall follow a second approach where the two bases are treated completely symmetrically. Replacing in relations (A-7)and (A-10)the ui by the vs , we construct the new Fock basis. We next define the operators картинка 98by transposing relations (A-17)and (A-18)to the new basis. We then must verify that these operators obey relation (A-51), without limiting ourselves, as in (A-50), to their action on the vacuum state.

(i) Bosons

Relations (A-7)and (A-17)lead to:

(A-55) where on the righthand side the ni first particles occupy the same - фото 99

where, on the right-hand side, the ni first particles occupy the same individual state ui the following nj particles, numbered from ni + 1 to ni + nj , the individual state uj , etc. The equivalent relation in the second basis can be written:

(A-56) with A57 Replacing on the righthand side of A56 the first ket vs - фото 100

with:

(A-57) Quantum Mechanics Volume 3 - изображение 101

Replacing on the right-hand side of (A-56), the first ket | vs 〉 by:

(A-58) Quantum Mechanics Volume 3 - изображение 102

we obtain:

(A-59) Following the same procedure for all the basis vectors of the righthand side - фото 103

Following the same procedure for all the basis vectors of the right-hand side, we can replace it by:

(A-60) or else 6 taking into account A55 A61 We have thus shown that the - фото 104

or else 6, taking into account (A-55):

(A-61) Quantum Mechanics Volume 3 - изображение 105

We have thus shown that the operators Quantum Mechanics Volume 3 - изображение 106.. act on the vacuum state in the same way as the operators defined by (A-51), raised to the powers ps , pt , ..

When the occupation numbers ps , pt , .. can take on any values, the kets (A-56)span the entire Fock space. Writing the previous equality for ps and ps + 1, we see that the action on all the basis kets of Quantum Mechanics Volume 3 - изображение 107and of Quantum Mechanics Volume 3 - изображение 108yields the same result, establishing the equality between these two operators. Relation (A-52)can be readily obtained by Hermitian conjugation.

(ii) Fermions

The demonstration is identical, with the constraint that the occupation numbers are 0 or 1 . As this requires no changes in the operator or state order, it involves no sign changes.

B. One-particle symmetric operators

Using creation and annihilation operators makes it much easier to deal, in the Fock space, with physical operators that are thus symmetric (§ C-4-a- β of Chapter XIV). We first study the simplest of such operators, those which act on a single particle and are called “one-particle operators”.

B-1. Definition

Consider an operator картинка 109defined in the space of individual states; картинка 110acts in the state space of particle q . It could be for example the momentum of the q -th particle, or its angular momentum with respect to the origin. We now build the operator associated with the total momentum of the N -particle system, or its total angular momentum, which is the sum over q of all the картинка 111associated with the individual particles.

A one-particle symmetric operator acting in the space S ( N ) for bosons - or A ( N ) for fermions - is therefore defined by:

(B-1) Quantum Mechanics Volume 3 - изображение 112

(contrary to states, which are symmetric for bosons and antisymmetric for fermions, the physical operators are always symmetric). The operator картинка 113acting in the Fock space is defined as the operator картинка 114acting either in S ( N ) or in A ( N ), depending on the specific case. Since the basis for the entire Fock space is the union of the bases of these spaces for all values of N , the operator is thus well defined in the direct sum of all these subspaces To summarize - фото 115is thus well defined in the direct sum of all these subspaces. To summarize:

(B-2) Using B1directly to compute the matrix elements of often leads to tedious - фото 116

Using (B-1)directly to compute the matrix elements of картинка 117often leads to tedious manipulations. Starting with an operator involving numbered particles, we place it between states with numbered particles; we then symmetrize the bra, the ket, and take into account the symmetry of the operator ( cf . footnote 1). This introduces several summations (on the particles and on the permutations) that have to be properly regrouped to be simplified. We will now show that expressing картинка 118in terms of creation and annihilation operators avoids all these intermediate calculations, taking nevertheless into account all the symmetry properties.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanics, Volume 3»

Представляем Вашему вниманию похожие книги на «Quantum Mechanics, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanics, Volume 3»

Обсуждение, отзывы о книге «Quantum Mechanics, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x