Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3

Здесь есть возможность читать онлайн «Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanics, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanics, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications.<br> <br> * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë<br> * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly<br> * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications<br> <br> Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms.<br> <br> Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics.<br> <br> Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.<br>

Quantum Mechanics, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanics, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(B-13) Equality B11is then simply written as B14 where - фото 141

Equality (B-11)is then simply written as:

(B-14) where is the occupation number operator in the state uk defined in A28 - фото 142

where картинка 143is the occupation number operator in the state | uk 〉 defined in (A-28).

B-3. Examples

A first very simple example is the operator Quantum Mechanics Volume 3 - изображение 144, already described in (A-29), and corresponding to the total number of particles:

(B-15) Quantum Mechanics Volume 3 - изображение 145

As expected, this operator does not depend on the basis {| ui 〉} chosen to count the particles, as we now show. Using the unitary transformations of operators (A-51)and (A-52), and with the full notation for the creation and annihilation operators to avoid any ambiguity, we get:

(B-16) which shows that B17 For a spinless particle one can also define the - фото 146

which shows that:

(B-17) For a spinless particle one can also define the operator corresponding to the - фото 147

For a spinless particle one can also define the operator corresponding to the probability density at point r 0:

(B-18) Relation B12then leads to the particle local density or single density - фото 148

Relation (B-12)then leads to the “particle local density” (or “single density”) operator:

(B-19) The same procedure as above shows that this operator is independent of the - фото 149

The same procedure as above shows that this operator is independent of the basis {| ui 〉} chosen in the individual states space.

Let us assume now that the chosen basis is formed by the eigenvectors | K i〉 of a particle’s momentum ħ k i, and that the corresponding annihilation operators are noted a ki. The operator associated with the total momentum of the system can be written as:

(B-20) As for the kinetic energy of the particles its associated operator is - фото 150

As for the kinetic energy of the particles, its associated operator is expressed as:

(B-21) B4 Single particle density operator Consider the average value of a - фото 151

B-4. Single particle density operator

Consider the average value картинка 152of a one-particle operator картинка 153in an arbitrary N -particle quantum state. It can be expressed, using relation (B-12), as a function of the average values of operator products B22 This expression is close to that of the average value of an operator - фото 154:

(B-22) This expression is close to that of the average value of an operator for a - фото 155

This expression is close to that of the average value of an operator for a physical system composed of a single particle. Remember (Complement E III, § 4-b) that if a system is described by a single particle density operator the average value of any operator is written as B23 The a - фото 156, the average value of any operator is written as B23 The above two expressions can be made to coincide if - фото 157is written as:

(B-23) The above two expressions can be made to coincide if for the system of - фото 158

The above two expressions can be made to coincide if, for the system of identical particles, we introduce a “density operator reduced to a single particle” Quantum Mechanics Volume 3 - изображение 159whose matrix elements are defined by:

(B-24) Quantum Mechanics Volume 3 - изображение 160

This reduced operator allows computing average values of all the single particle operators as if the system consisted only of a single particle:

(B-25) Quantum Mechanics Volume 3 - изображение 161

where the trace is taken in the state space of a single particle.

The trace of the reduced density operator thus defined is not equal to unity, but to the average particle number as can be shown using (B-24)and (B-15):

(B-26) This normalization convention can be useful For example the diagonal matrix - фото 162

This normalization convention can be useful. For example, the diagonal matrix element of Quantum Mechanics Volume 3 - изображение 163in the position representation is simply the average of the particle local density defined in (B-19):

(B-27) Quantum Mechanics Volume 3 - изображение 164

It is however easy to choose a different normalization for the reduced density operator: its trace can be made equal to 1 by dividing the right-hand side of definition (B-24)by the factor картинка 165.

C. Two-particle operators

We now extend the previous results to the case of two-particle operators.

C-1. Definition

Consider a physical quantity involving two particles, labeled q and q ′. It is associated with an operator картинка 166acting in the state space of these two particles (the tensor product of the two individual state’s spaces). Starting from this binary operator, the easiest way to obtain a symmetric N -particle operator is to sum all the картинка 167over all the particles q and q ′, where the two subscripts q and q ′ range from 1 to N . Note, however, that in this sum all the terms where q = q ′ add up to form a one-particle operator of exactly the same type as those studied in § B-1. Consequently, to obtain a real two-particle operator we shall exclude the terms where q = q ′ and define:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanics, Volume 3»

Представляем Вашему вниманию похожие книги на «Quantum Mechanics, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanics, Volume 3»

Обсуждение, отзывы о книге «Quantum Mechanics, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x