Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3

Здесь есть возможность читать онлайн «Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanics, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanics, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications.<br> <br> * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë<br> * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly<br> * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications<br> <br> Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms.<br> <br> Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics.<br> <br> Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.<br>

Quantum Mechanics, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanics, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Many physics problems involve computing the average particle interaction energy. For the sake of simplicity, we shall only study here spinless particles (or, equivalently, particles being in the same internal spin state so that the corresponding quantum number does not come into play) and assume their interactions to be binary. These interactions are then described by an operator картинка 212, diagonal in the {| r 1, r 2, … r N〉} basis (eigenstates of all the particles’ positions), which multiplies each of these states by the function:

(C-25) Quantum Mechanics Volume 3 - изображение 213

In this expression, the function W 2( r q, r q′) yields the diagonal matrix elements of the operator Quantum Mechanics Volume 3 - изображение 214associated with the two-particle ( q , q ′) interaction, where R qis the quantum operator associated with the classical position r q. The matrix elements of this operator in the | uk ; ul 〉 basis is simply obtained by inserting a closure relation for each of the two positions. This leads to:

(C-26) Quantum Mechanics Volume 3 - изображение 215

α. General expression:

Replacing in (C-16)operator Quantum Mechanics Volume 3 - изображение 216by Quantum Mechanics Volume 3 - изображение 217and taking (C-26)into account, we get:

(C-27) We can thus write the average value of the interaction energy in any normalized - фото 218

We can thus write the average value of the interaction energy in any normalized state |Φ〉 as:

(C-28) where G 2 r 1 r 2 is the spatial correlation function defined by C29 - фото 219

where G 2( r 1, r 2) is the spatial correlation function defined by:

(C-29) Consequently knowing the correlation function G 2 r 1 r 2 associated with - фото 220

Consequently, knowing the correlation function G 2( r 1, r 2) associated with the quantum state |Φ〉 allows computing directly, by a double spatial integration, the average interaction energy in that state.

Actually, as we shall see in more detail in § B-3 of Chapter XVI, G 2( r 1, r 2) is simply the double density , equal to the probability density of finding any particle in r 1and another one in r 2. The physical interpretation of (C-28)is simple: the average interaction energy is equal to the sum over all the particles’ pairs of the interaction energy W int( r 1, r 2) of a pair, multiplied by the probability of finding such a pair at points r 1and r 2(the factor 1/2 avoids the double counting of each pair).

β. Specific case: the Fock states

Let us assume the state |Φ〉 is a Fock state, with specified occupation numbers ni :

(C-30) Quantum Mechanics Volume 3 - изображение 221

We can compute explicitly, as a function of the ni , the average values:

(C-31) Quantum Mechanics Volume 3 - изображение 222

contained in (C-29). We first notice that to get a non-zero result, the two operators a †must create particles in the same states from which they were removed by the two annihilation operators a . Otherwise the action of the four operators on the ket |Φ〉 will yield a new Fock state orthogonal to the initial one, and hence a zero result. We must therefore impose either i = k and j = l , or the opposite i = l and j = k , or eventually the special case where all the subscripts are equal. The first case leads to what we call the “direct term”, and the second, the “exchange term”. We now compute their values.

(i) Direct term, i = k and j = l , shown on the left diagram of Figure 3. If i = j = k = l , the four operators acting on |Φ〉 reconstruct the same ket, multiplied by the factor ni ( ni — 1); this yields a zero result for fermions. If ij , we can move the operator ak = ai just to the right of the first operator картинка 223to form the particle number operator картинка 224. This permutation in the operators’ order does not change anything: for bosons, we are moving commuting operators, and for fermions, two anticommutations introduce two minus signs, which cancel each other. The same goes for the operators with subscript j , leading to the particle number Finally the direct term is equal to C32 - фото 225. Finally, the direct term is equal to:

(C-32) Figure 3 Schematic representation of a direct term left diagram where each - фото 226

Figure 3 Schematic representation of a direct term left diagram where each - фото 227

Figure 3: Schematic representation of a direct term (left diagram where each particle remains in the same individual state) and an exchange term (right diagram where the particles exchange their individual states). As in Figure 2, the solid lines represent the particles free propagation, and the dashed lines their binary interaction .

where the second sum is zero for fermions ( ni is equal to 0 or 1).

(ii) Exchange term, i = l and j = k , shown on the right diagram of Figure 3. The case where all four subscripts are equal is already included in the direct term. To get the operators’ product картинка 228starting from the product картинка 229, we just have to permute the two central operators Quantum Mechanics Volume 3 - изображение 230; when ij this operation is of no consequence for bosons, but introduces a change of sign for fermions (anticommutation). The exchange term can therefore be written as Quantum Mechanics Volume 3 - изображение 231, with:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanics, Volume 3»

Представляем Вашему вниманию похожие книги на «Quantum Mechanics, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanics, Volume 3»

Обсуждение, отзывы о книге «Quantum Mechanics, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x