Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3

Здесь есть возможность читать онлайн «Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanics, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanics, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications.<br> <br> * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë<br> * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly<br> * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications<br> <br> Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms.<br> <br> Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics.<br> <br> Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.<br>

Quantum Mechanics, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanics, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

B-2. Expression in terms of the operators a and a

We choose a basis {| ui 〉} for the individual states. The matrix elements fkl of the one-particle operator Quantum Mechanics Volume 3 - изображение 119are given by:

(B-3) Quantum Mechanics Volume 3 - изображение 120

They can be used to expand the operator itself as follows:

(B-4) B2a Action of F Non a ket with N particles Using in B1the expression - фото 121

B-2-a. Action of F (N)on a ket with N particles

Using in (B-1)the expression (B-4)for leads to B5 The action of on a symmetrized ket written as - фото 122leads to:

(B-5) The action of on a symmetrized ket written as A9therefore includes a sum - фото 123

The action of on a symmetrized ket written as A9therefore includes a sum over k and l of - фото 124on a symmetrized ket written as (A-9)therefore includes a sum over k and l of terms:

(B-6) with coefficients fkl Let us use A7or A10to compute this ket for given - фото 125

with coefficients fkl . Let us use (A-7)or (A-10)to compute this ket for given values of k and l . As the operator contained in the bracket is symmetric with respect to the exchange of particles, it commutes with the two operators SN and AN (§ C-4-a- β of Chapter XIV)), and the ket can be written as:

(B-7) In the summation over q the only nonzero terms are those for which the - фото 126

In the summation over q , the only non-zero terms are those for which the individual state | ul 〉 coincides with the individual state | um 〉 occupied in the ket on the right by the particle labeled q; there are nl different values of q that obey this condition (i.e. none or one for fermions). For these nl terms, the operator | q : | uk 〉 〈 q : ul | transforms the state | um 〉 into | ui 〉, then SN (or AN ) reconstructs a symmetrized (but not normalized) ket:

(B-8) This ket is always the same for all the numbers q among the nl selected ones - фото 127

This ket is always the same for all the numbers q among the nl selected ones (for fermions, this term might be zero, if the state | uk 〉 was already occupied in the initial ket). We shall then distinguish two cases:

(i) For kl , and for bosons, the ket written in (B-8)equals:

(B-9) where the square root factor comes from the variation in the occupation numbers - фото 128

where the square root factor comes from the variation in the occupation numbers nk and nl , which thus change the numerical coefficients in the definition (A-7)of the Fock states. As this ket is obtained nl times, this factor becomes Quantum Mechanics Volume 3 - изображение 129. This is exactly the factor obtained by the action on the same symmetrized ket of the operator картинка 130, which also removes a particle from the state | ul 〉 and creates a new one in the state | uk 〉. Consequently, the operator картинка 131reproduces exactly the same effect as the sum over q .

For fermions, the result is zero except when, in the initial ket, the state | ul 〉 was occupied by a particle, and the state | uk 〉 empty, in which case no numerical factor appears; as before, this is exactly what the action of the operator картинка 132would do.

(ii) if k = l , for bosons the only numerical factor involved is nl , coming from the number of terms in the sum over q that yields the same symmetrized ket. For fermions, the only condition that yields a non-zero result is for the state | ul 〉 to be occupied, which also leads to the factor nl . In both cases, the sum over q amounts to the action of the operator We have shown that B10 The summation over k and l in B5then yields - фото 133.

We have shown that:

(B-10) The summation over k and l in B5then yields B11 B2b Expression - фото 134

The summation over k and l in (B-5)then yields:

(B-11) B2b Expression valid in the entire Fock space The righthand side of - фото 135

B-2-b. Expression valid in the entire Fock space

The right-hand side of (B-11)contains an expression completely independent of the space S ( N ) or A ( N ) in which we defined the action of the operator картинка 136. Since we defined operator картинка 137as acting as in each of these subspaces having fixed N we can simply write B12 This - фото 138in each of these subspaces having fixed N , we can simply write:

(B-12) This is the expression of oneparticle symmetric operators we were looking for - фото 139

This is the expression of one-particle symmetric operators we were looking for. Its form is valid for any value of N and the particles are no longer numbered; it contains equal numbers of creation and annihilation operators, which only act on occupation numbers.

Comment:

Choosing the proper basis {| ui 〉} it is always possible to diagonalize the Hermitian operator картинка 140and write:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanics, Volume 3»

Представляем Вашему вниманию похожие книги на «Quantum Mechanics, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanics, Volume 3»

Обсуждение, отзывы о книге «Quantum Mechanics, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x