Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3

Здесь есть возможность читать онлайн «Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanics, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanics, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications.<br> <br> * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë<br> * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly<br> * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications<br> <br> Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms.<br> <br> Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics.<br> <br> Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.<br>

Quantum Mechanics, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanics, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(ii) One should not confuse a Fock state with an arbitrary state of the Fock space. The occupation numbers of individual states are all well defined in a Fock state (also called “number state”), whereas an arbitrary state of the Fock space is a linear superposition of these eigenstates, with several non-zero coefficients.

A-2. Creation operators a

Choosing a basis of individual states {| ui 〉}, we now define the action in the Fock space of the creation operator 5 картинка 24on a particle in the state | ui 〉.

A-2-a. Bosons

For bosons, we introduce the linear operator defined by A16 As all the states of the Fock space may be obtained by a - фото 25defined by:

(A-16) As all the states of the Fock space may be obtained by a linear superposition - фото 26

As all the states of the Fock space may be obtained by a linear superposition of | n 1, n 2, .., ni , ..〉, the action of картинка 27is defined in the entire space. It adds a particle to the system, which goes from a state of S ( N ) to a state of S ( N + 1), and in particular from the vacuum to a state having one single occupied state.

Creation operators acting on the vacuum allow building occupied states. Recurrent application of (A-16), leads to:

(A-17) Comment Why was the factor introduced in A16 We shall see later B - фото 28

Comment:

Why was the factor картинка 29introduced in (A-16)? We shall see later (§ B) that, together with the factors of (A-7), it simplifies the computations.

A-2-b. Fermions

For fermions, we define the operator by A18 where the newly created state ui appears first in the list of - фото 30by:

(A-18) where the newly created state ui appears first in the list of states in the - фото 31

where the newly created state | ui 〉 appears first in the list of states in the ket on the right-hand side. If we start from a ket where the individual state | ui 〉 is already occupied ( ni = 1), the action of leads to zero as in this case A10gives A19 Formulas A16and - фото 32leads to zero, as in this case (A-10)gives:

(A-19) Formulas A16and A17are also valid for fermions with all the occupation - фото 33

Formulas (A-16)and (A-17)are also valid for fermions, with all the occupation numbers equal to 0 or 1 (or else both members are zero).

Comment:

Definition (A-18)must not depend on the specific order of the individual states uj , .., uk , .., ul , .. in the ket on which the operator картинка 34acts. It can be easily verified that any permutation of the states simply multiply by its parity both members of the equality. It therefore remains valid independently of the order chosen for the individual states in the initial ket.

A-3. Annihilation operators a

We now study the Hermitian conjugate operator of картинка 35, that we shall simply call aui since taking twice in a row the Hermitian conjugate of an operator brings you back to the initial operator.

A-3-a. Bosons

For bosons, we deduce from (A-16)that the only non-zero matrix elements of in the Fock states orthonormal basis are A20 They link two vectors having - фото 36in the Fock states orthonormal basis are:

(A-20) They link two vectors having equal occupation numbers except for ni which - фото 37

They link two vectors having equal occupation numbers except for ni , which increases by one going from the ket to the bra.

The matrix elements of the Hermitian conjugate of are obtained from relation A20 using the general definition B49 of - фото 38are obtained from relation (A-20), using the general definition (B-49) of Chapter II. The only non-zero matrix elements of aui are thus:

(A-21) Since the basis we use is complete we can deduce the action of the operators - фото 39

Since the basis we use is complete, we can deduce the action of the operators ai on kets having given occupation numbers:

(A-22) note that we have replaced ni by ni 1 As opposed to which adds a - фото 40

(note that we have replaced ni by ni — 1). As opposed to картинка 41, which adds a particle in the state | ui 〉, the operator aui takes one away; it yields zero when applied on a ket where the state | ui 〉 is empty to begin with, such as the vacuum state:

(A-23) картинка 42

We call auithe annihilation operator ” for the state | ui 〉.

A-3-b. Fermions

For fermions, relation (A-18)allows writing the matrix elements:

(A-24) The only nonzero elements are those where all the individual occupied states - фото 43

The only non-zero elements are those where all the individual occupied states are left unchanged in the bra and the ket, except for the state ui only present in the bra, but not in the ket. As for the occupation numbers, none change, except for ni which goes from 0 (in the ket) to 1 (in the bra).

The Hermitian conjugation operation then yields the action of the corresponding annihilation operator:

(A-25) Quantum Mechanics Volume 3 - изображение 44

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanics, Volume 3»

Представляем Вашему вниманию похожие книги на «Quantum Mechanics, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanics, Volume 3»

Обсуждение, отзывы о книге «Quantum Mechanics, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x