Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3

Здесь есть возможность читать онлайн «Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanics, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanics, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications.<br> <br> * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë<br> * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly<br> * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications<br> <br> Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms.<br> <br> Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics.<br> <br> Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.<br>

Quantum Mechanics, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanics, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The computation of the average value follows the same steps 57 as in Complement E XV operator V 1is the - фото 1007follows the same steps:

(57) as in Complement E XV operator V 1is the oneparticle external potential - фото 1008

(as in Complement E XV, operator V 1is the one-particle external potential operator).

To complete the calculation of the average value of Ĥ , we now have to compute the trace картинка 1009, the average value of the interaction energy when the system is described by Using relation 51we can write this average value as a double trace 58 - фото 1010. Using relation (51)we can write this average value as a double trace:

(58) We now turn to the average value of The calculation is simplified since - фото 1011

We now turn to the average value of картинка 1012. The calculation is simplified since картинка 1013is, like Ĥ 0, a one-particle operator; furthermore, the | θi 〉 have been chosen to be the eigenvectors of картинка 1014with eigenvalues картинка 1015– see relation (26). We just replace in (56), Ĥ 0by and obtain 59 Regrouping all these results and using relation 36 we - фото 1016, and obtain:

(59) Quantum Mechanics Volume 3 - изображение 1017

Regrouping all these results and using relation (36), we can write the variational grand potential as the sum of three terms:

(60) Quantum Mechanics Volume 3 - изображение 1018

with:

(61) 2d Optimization We now vary the eigenenergies and eigenstates θk of - фото 1019

2-d. Optimization

We now vary the eigenenergies картинка 1020and eigenstates | θk 〉 of картинка 1021to find the value of the density operator картинка 1022that minimizes the average value картинка 1023of the potential. We start with the variations of the eigenstates, which induce no variation of картинка 1024. The computation is actually very similar to that of Complement E XV, with the same steps: variation of the eigenvectors, followed by the demonstration that the stationarity condition is equivalent to a series of eigenvalue equations for a Hartree-Fock operator (a one-particle operator). Nevertheless, we will carry out this computation in detail, as there are some differences. In particular, and contrary to what happened in Complement E XV, the number of states | θi 〉 to be varied is no longer fixed by the particle number N ; these states form a complete basis of the individual state space, and their number can go to infinity. This means that we can no longer give to one (or several) state(s) a variation orthogonal to all the other | θj 〉; this variation will necessarily be a linear combination of these states. In a second step, we shall vary the energies картинка 1025.

α. Variations of the eigenstates

As the eigenstates | θi 〉 vary, they must still obey the orthogonality relations:

(62) Quantum Mechanics Volume 3 - изображение 1026

The simplest idea would be to vary only one of them, | θl 〉 for example, and make the change:

(63) Quantum Mechanics Volume 3 - изображение 1027

The orthogonality conditions would then require:

(64) Quantum Mechanics Volume 3 - изображение 1028

preventing |d θl 〉 from having a component on any ket | θi 〉 other than | θl 〉: in other words, |d θl 〉 and | θl 〉 would be colinear. As | θl 〉 must remain normalized, the only possible variation would thus be a phase change, which does not affect either the density operator картинка 1029(1) or any average values computed with картинка 1030. This variation does not change anything and is therefore irrelevant.

It is actually more interesting to vary simultaneously two eigenvectors, which will be called | θl 〉 and | θm 〉, as it is now possible to give | θl 〉 a component on | θm 〉, and the reverse. This does not change the two-dimensional subspace spanned by these two states; hence their orthogonality with all the other basis vectors is automatically preserved. Let us give the two vectors the following infinitesimal variations (without changing their energies and 65 where da is an infinitesimal real number and χ - фото 1031and 65 where da is an infinitesimal real number and χ an arbitrary but fixed - фото 1032):

(65) where da is an infinitesimal real number and χ an arbitrary but fixed real - фото 1033

where da is an infinitesimal real number and χ an arbitrary but fixed real number. For any value of χ , we can check that the variation of 〈 θl | θl 〉 is indeed zero (it contains the scalar products 〈 θl | θm 〉 or 〈 θm | θl 〉 which are zero), as is the symmetrical variation of 〈 θm | θm 〉, and that we have:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanics, Volume 3»

Представляем Вашему вниманию похожие книги на «Quantum Mechanics, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanics, Volume 3»

Обсуждение, отзывы о книге «Quantum Mechanics, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x