Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3

Здесь есть возможность читать онлайн «Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanics, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanics, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications.<br> <br> * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë<br> * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly<br> * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications<br> <br> Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms.<br> <br> Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics.<br> <br> Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.<br>

Quantum Mechanics, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanics, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(33) We simply get an expression similar to relation 7of Complement B XV obtained - фото 952

We simply get an expression similar to relation (7)of Complement B XV, obtained for an ideal gas. Since for fermions nk can only take the values 0 and 1, we get:

(34) whereas for bosons nk varies from 0 to infinity so that 35 In both cases - фото 953

whereas for bosons nk varies from 0 to infinity, so that:

(35) In both cases we can write 36 with η 1 for bosons and η 1 for - фото 954

In both cases we can write:

(36) with η 1 for bosons and η 1 for fermions Computing the entropy can be - фото 955

with η = +1 for bosons, and η = – 1 for fermions.

Computing the entropy can be done in a similar way. As the density operator картинка 956has the same form as the one describing the thermal equilibrium of an ideal gas, we can use for a system described by картинка 957the formulas obtained for the entropy of a system without interactions.

β. One particle, reduced density operator

Let us compute the average value of Quantum Mechanics Volume 3 - изображение 958with the density operator Quantum Mechanics Volume 3 - изображение 959:

(37) Quantum Mechanics Volume 3 - изображение 960

We saw in § 2-c of Complement B XVthat:

(38) where the distribution function fβ is noted for fermions and - фото 961

where the distribution function is noted for fermions and for bosons 39 When the system is described - фото 962for fermions, and for bosons 39 When the system is described by the density operator - фото 963for bosons:

(39) When the system is described by the density operator the average populations of - фото 964

When the system is described by the density operator картинка 965the average populations of the individual states картинка 966are therefore determined by the usual Fermi-Dirac or Bose-Einstein distributions. From now on, and to simplify the notation, we shall write simply | θk 〉 for the kets картинка 967.

We can introduce a “one-particle reduced density operator” 1 by 2 40 where the 1 enclosed in parentheses and the subscript 1 on - фото 968(1) by 2 :

(40) where the 1 enclosed in parentheses and the subscript 1 on the lefthand side - фото 969

where the 1 enclosed in parentheses and the subscript 1 on the left-hand side emphasize we are dealing with an operator acting in the one-particle state space (as opposed to картинка 970that acts in the Fock space); needless to say, this subscript has nothing to do with the initial numbering of the particles, but simply refers to any single particle among all the system particles. The diagonal elements of картинка 971(1) are the individual state populations. With this operator, we can compute the average value over Quantum Mechanics Volume 3 - изображение 972of any one-particle operator Quantum Mechanics Volume 3 - изображение 973:

(41) Quantum Mechanics Volume 3 - изображение 974

as we now show. Using the expression (B-12) of Chapter XVfor any one-particle operator 3 , as well as (38), we can write:

(42) Quantum Mechanics Volume 3 - изображение 975

that is:

(43) Quantum Mechanics Volume 3 - изображение 976

As we shall see, the density operator картинка 977(1) is quite useful since it allows obtaining in a simple way all the average values that come into play in the Hartree-Fock computations. Our variational calculations will simply amount to varying картинка 978(1). This operator presents, in a certain sense, all the properties of the variational density operator картинка 979chosen in (28)in the Fock space. It plays the same role 4 as the projector PN (which also represents the essence of the variational N -particle ket) played in Complement E XV. In a general way, one can say that the basic principle of the Hartree-Fock method is to reduce the binary correlation functions of the system to products of single-particle correlation functions (more details on this point will be given in § 2-b of Complement C XVI).

The average value of the operator for the total particle number is written 44 Both functions a - фото 980for the total particle number is written:

(44) Both functions and increase as a function of μ and for any - фото 981

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanics, Volume 3»

Представляем Вашему вниманию похожие книги на «Quantum Mechanics, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanics, Volume 3»

Обсуждение, отзывы о книге «Quantum Mechanics, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x