Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3

Здесь есть возможность читать онлайн «Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanics, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanics, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications.<br> <br> * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë<br> * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly<br> * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications<br> <br> Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms.<br> <br> Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics.<br> <br> Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.<br>

Quantum Mechanics, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanics, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Because of the particle interactions, these formulas generally lead to calculations too complex to be carried to completion. We therefore look, in this complement, for approximate expressions of ρ eqand Z that are easier to use and are based on the mean field approximation.

1-b. A useful inequality

Consider two density operators ρ and ρ′ , both having a trace equal to 1:

(7) Quantum Mechanics Volume 3 - изображение 903

As we now show, the following relation is always true:

(8) Quantum Mechanics Volume 3 - изображение 904

We first note that the function x ln x , defined for x ≥ 0, is always larger than the function x – 1, which is the equation of its tangent at x = 1 ( Fig. 1). For positive values of x and y we therefore always have:

(9) Quantum Mechanics Volume 3 - изображение 905

or, after multiplying by y :

(10) Quantum Mechanics Volume 3 - изображение 906

the equality occurring only if x = y .

Figure 1 Plot of the function x lnx At x 1 this curve is tangent to the - фото 907

Figure 1: Plot of the function x lnx. At x = 1 , this curve is tangent to the line y = x – 1 (dashed line) but always remains above it; the function value is thus always larger than x – 1.

Let us call pn the eigenvalues of ρ corresponding to the normalized eigenvectors | un 〉, and картинка 908the eigenvalues of ρ′ corresponding to the normalized eigenvectors | vm 〉. Used for the positive numbers pn and relation 10yields 11 We now multiply this relation by the square of - фото 909, relation (10)yields:

(11) We now multiply this relation by the square of the modulus of the scalar - фото 910

We now multiply this relation by the square of the modulus of the scalar product:

(12) and sum over m and n For the term in pn ln pn of 11 the summation over m - фото 911

and sum over m and n . For the term in pn ln pn of (11), the summation over m yields in (12)the identity operator expanded on the basis {| v m〉}; we then get 〈 un | un 〉 = 1, and are left with the sum over n of pn ln pn , that is the trace Tr{ ρ ln ρ }. As for the term in pn ln the summation over m introduces 13 and we get 14 - фото 912, the summation over m introduces:

(13) and we get 14 As for the terms on the righthand side of inequality 11 - фото 913

and we get:

(14) As for the terms on the righthand side of inequality 11 the term in pn - фото 914

As for the terms on the right-hand side of inequality (11), the term in pn yields:

(15) and the one in also yields 1 for the same reasons and both terms cancel out - фото 915

and the one in also yields 1 for the same reasons and both terms cancel out We finally - фото 916also yields 1 for the same reasons, and both terms cancel out. We finally obtain the inequality:

(16) which proves 8 Comment One may wonder under which conditions the above - фото 917

which proves (8).

Comment:

One may wonder under which conditions the above relation becomes an equality. This requires the inequality (11)to become an equality, which means картинка 918whenever the scalar product (12)is non-zero; consequently all the eigenvalues of the two operators ρ and ρ′ must be equal. In addition, the eigenvectors of each operator corresponding to different eigenvalues must be orthogonal (their scalar product must be zero). In other words, the eigenvalues and the subspaces spanned by their eigenvectors are identical, which amounts to saying that ρ = ρ′ .

1-c. Minimization of the thermodynamic potential

The entropy S associated with any density operator ρ having a trace equal to 1 is defined by relation (6)of Appendix VI:

(17) Quantum Mechanics Volume 3 - изображение 919

The thermodynamic potential of the grand canonical ensemble is defined by the “grand potential” Φ, which can be expressed as a function of ρ by relation ( Appendix VI, § 1-c- β ):

(18) Inserting 5into 18 we see that the value of Φ at equilibrium Φ eq can be - фото 920

Inserting (5)into (18), we see that the value of Φ at equilibrium, Φ eq, can be directly obtained from the partition function Z :

(19) We therefore have 20 Consider now any density operator ρ and its - фото 921

We therefore have:

(20) Consider now any density operator ρ and its associated function Φ obtained from - фото 922

Consider now any density operator ρ and its associated function Φ obtained from (18). According to (5)and (20), we can write:

(21) Inserting this result in 18yields 22 Now relation 16 used with ρ ρ - фото 923

Inserting this result in (18)yields:

(22) Quantum Mechanics Volume 3 - изображение 924

Now relation (16), used with ρ′ = ρ eq, is written as:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanics, Volume 3»

Представляем Вашему вниманию похожие книги на «Quantum Mechanics, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanics, Volume 3»

Обсуждение, отзывы о книге «Quantum Mechanics, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x