Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3

Здесь есть возможность читать онлайн «Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanics, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanics, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications.<br> <br> * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë<br> * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly<br> * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications<br> <br> Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms.<br> <br> Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics.<br> <br> Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.<br>

Quantum Mechanics, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanics, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

4 4 If in (15)we set , we see that obeys the differential equation obtained by replacing λ(t) by in (15). If we simply choose for α(t) the integral over time of the function λ(t), this constant will disappear from the differential equation.

5 5 The same argument as above, but starting from the variation δS — iδ′S, would lead to the complex conjugate of (8), and hence to the same equation.

Complement G XVFermions or Bosons: Mean field thermal equilibrium

1 1 Variational principle 1-a Notation, statement of the problem 1-b A useful inequality 1-c Minimization of the thermodynamic potential

2 2 Approximation for the equilibrium density operator …. 2-a Trial density operators 2-b Partition function, distributions 2-c Variational grand potential 2-d Optimization

3 3 Temperature dependent mean field equations 3-a Form of the equations 3-b Properties and limits of the equations 3-c Differences with the zero-temperature Hartree-Fock equations (fermions) 3-d Zero-temperature limit (fermions) 3-e Wave function equations

Understanding the thermal equilibrium of a system of interacting identical particles is important for many physical problems: conductor or semiconductor electronic properties, liquid Helium or ultra-cold gas properties, etc. It is also essential for studying phase transitions, various and multiple examples of which occur in solid and liquid physics: spontaneous magnetism appearing below a certain temperature, changes in electrical conduction, and many others. However, even if the Hamiltonian of a system of identical particles is known, calculation of the equilibrium properties cannot, in general, be carried to completion: these calculations present real difficulties in the handling of state vectors and interaction operators, where non-trivial combinations of creation and annihilation operators occur. One must therefore use one or several approximations. The most common one is probably the mean field approximation, which, as we saw in Complement E XV, is the base of the Hartree-Fock method. In that complement, we showed, in terms of state vectors, how this method could be used to obtain approximate values for the energy levels of a system of interacting particles. As we consider here the more complex problem of thermal equilibrium, which must be treated in terms of density operators, we show how the Hartree-Fock method can be extended to this more general case.

We are going to see that, thanks to this approach, one can obtain compact formulas for an approximate value of the density operator at thermal equilibrium, in the framework of the grand canonical ensemble. The equations to be solved are fairly similar 1 to those of Complement E XV. The Hartree-Fock method also gives a value of the thermodynamic grand potential, which leads directly to the pressure of the system. The other thermodynamic quantities can then be obtained via partial derivatives with respect to the equilibrium parameters (volume, temperature, chemical potential, eventually external applied field, etc. – see Appendix VI). It is clearly a powerful method even though it still is an approximation as the particles interactions are treated via a mean field approach where certain correlations are not taken into account. Furthermore, for bosons, it can only be applied to physical systems far from Bose-Einstein condensation; the reasons for this limitation will be discussed in detail in § 4-a of Complement H XV.

Once we have recalled the notation and a few generalities, we shall establish (§ 1) a variational principle that applies to any density operator. It will allow us to search in any family of operators for the one closest to the density operator at thermal equilibrium. We will then introduce (§ 2) a family of trial density operators whose form reflects the mean field approximation; the variational principle will help us determine the optimal operator. We shall obtain Hartree-Fock equations for a non-zero temperature, and study some of their properties in the last section (§ 3). Several applications of these equations will be presented in Complement H XV.

The general idea and the structure of the computations will be the same as in Complement E XV, and we keep the same notation: we establish a variational condition, choose a trial family, and then optimize the system description within this family. This is why, although the present complement is self-contained, it might be useful to first read Complement E XV.

1. Variational principle

In order to use a certain number of general results of quantum statistical mechanics (see Appendix refappend-6 for a more detailed review), we first introduce the notation.

1-a. Notation, statement of the problem

We assume the Hamiltonian is of the form:

(1) Quantum Mechanics Volume 3 - изображение 894

which is the sum of the particles’ kinetic energy Ĥ 0, their coupling energy Quantum Mechanics Volume 3 - изображение 895with an external potential:

(2) Quantum Mechanics Volume 3 - изображение 896

and their mutual interaction which can be expressed as 3 We are going to use the grand canonical - фото 897, which can be expressed as:

(3) We are going to use the grand canonical ensemble Appendix VI 1c where - фото 898

We are going to use the “grand canonical” ensemble ( Appendix VI, § 1-c), where the particle number is not fixed, but takes on an average value determined by the chemical potential μ . In this case, the density operator ρ is an operator acting in the entire Fock space εF (where N can take on all the possible values), and not only in the state space εN for N particles (which is is more restricted since it corresponds to a fixed value of N ). We set, as usual:

(4) картинка 899

where kB is the Boltzmann constant and T the absolute temperature. At the grand canonical equilibrium, the system density operator depends on two parameters, β and the chemical potential μ , and can be written as:

(5) with the relation that comes from normalizing to 1 the trace of ρ eq 6 The - фото 900

with the relation that comes from normalizing to 1 the trace of ρ eq:

(6) The function Z is called the grand canonical partition function see Appendix - фото 901

The function Z is called the “grand canonical partition function” (see Appendix VI, § 1-c). The operator картинка 902associated with the total particle number is defined in (B-17) of Chapter XV. The temperature T and the chemical potential μ are two intensive quantities, respectively conjugate to the energy and the particle number.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanics, Volume 3»

Представляем Вашему вниманию похожие книги на «Quantum Mechanics, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanics, Volume 3»

Обсуждение, отзывы о книге «Quantum Mechanics, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x