Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3

Здесь есть возможность читать онлайн «Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanics, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanics, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications.<br> <br> * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë<br> * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly<br> * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications<br> <br> Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms.<br> <br> Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics.<br> <br> Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.<br>

Quantum Mechanics, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanics, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Let us write for example that картинка 839, which means the right-hand side of the second line in (13)must be zero. As the time evolution between t 0and t 1of the bra картинка 840is arbitrary, this condition imposes this bra multiplies a zero-value ket, at all times. Consequently, the ket must obey the equation 15 which is none other than the Schrödinger - фото 841must obey the equation:

(15) which is none other than the Schrödinger equation associated with the - фото 842

which is none other than the Schrödinger equation associated with the Hamiltonian H ( t ) + λ ( t ).

Actually, λ ( t ) simply introduces a change in the origin of the energies and this only modifies the total phase 4 of the state vector картинка 843, which has no physical effect. Without loss of generality, this Lagrange factor may therefore be ignored, and we can set:

(16) картинка 844

A necessary condition 5 for the stationarity of S is that картинка 845obey the Schrödinger equation (8)– or be physically equivalent (i.e. equal to within a global time-dependent phase factor) to a solution of this equation. Conversely, assume картинка 846is a solution of the Schrödinger equation, and give this ket a variation as in (11). It is then obvious from the second line of (13)that картинка 847is zero. As for картинка 848, an integration by parts over time shows that it is the complex conjugate of картинка 849, and therefore also equal to zero. The functional S is thus stationary in the vicinity of any exact solution of the Schrödinger equation.

Suppose we choose any variational family картинка 850of normalized kets картинка 851, but which now includes a ket картинка 852for which S is stationary. A simple example is the case where картинка 853is a family картинка 854that contains the exact solution of the Schrödinger equation; according to what we just saw, this exact solution will make S stationary, and conversely, the ket that makes S stationary is necessarily картинка 855. In this case, imposing the variation of S to be zero allows identifying, inside the family картинка 856, the exact solution we are looking for. If we now change the family continuously from картинка 857to картинка 858, in general картинка 859will no longer contain the exact solution of the Schrödinger equation. We can however follow the modifications at all times of the values of the ket картинка 860. Starting from an exact solution of the equation, this ket progressively changes, but, by continuity, will stay in the vicinity of this exact solution if картинка 861stays close to картинка 862. This is why annulling the variation of S in the family картинка 863is a way of identifying a member of that family whose evolution remains close to that of a solution of the Schrödinger equation. This is the method we will follow, using the Fock states as a particular variational family.

2-c. Particular case of a time-independent Hamiltonian

If the Hamiltonian H is time-independent, one can look for time-independent kets картинка 864to make the functional S stationary. The function to be integrated in the definition of the functional S also becomes time-independent, and we can write S as:

(17) Quantum Mechanics Volume 3 - изображение 865

Since the two times t 0and t 1are fixed, the stationarity of S is equivalent to that of the diagonal matrix element of the Hamiltonian картинка 866. We find again the stationarity condition of the time-independent variational method (Complement E XI), which appears as a particular case of the more general method of the time-dependent variations. Consequently, it is not surprising that the Hartree-Fock methods, time-dependent or not, lead to the same Hartree-Fock potential, as we now show.

3. Computing the optimizer

The family of the state vectors we consider is the set of Fock kets картинка 867defined in (1). We first compute the function to be integrated in the functional (10)when |Ψ( t )〉 takes the value картинка 868.

3-a. Average energy

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanics, Volume 3»

Представляем Вашему вниманию похожие книги на «Quantum Mechanics, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanics, Volume 3»

Обсуждение, отзывы о книге «Quantum Mechanics, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x