Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3

Здесь есть возможность читать онлайн «Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanics, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanics, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications.<br> <br> * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë<br> * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly<br> * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications<br> <br> Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms.<br> <br> Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics.<br> <br> Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.<br>

Quantum Mechanics, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanics, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Let us introduce a general variational principle; using the stationarity of a functional S of the state vector Ψ( t )〉, it will yield the time-dependent Schrödinger equation.

2-a. Definition of a functional

Consider an arbitrarily given Hamiltonian H ( t ). We assume the state vector |Ψ( t )〉 to have any time dependence, and we note Quantum Mechanics Volume 3 - изображение 801the ket physically equivalent to |Ψ( t )〉, but with a constant norm:

(6) Quantum Mechanics Volume 3 - изображение 802

The functional S of is defined as 1 7 where t 0and t 1are two arbitrary times such that t 0 - фото 803is defined as 1 :

(7) where t 0and t 1are two arbitrary times such that t 0 t 1 In the particular - фото 804

where t 0and t 1are two arbitrary times such that t 0< t 1. In the particular case where the chosen is equal to a solution of the Schrödinger equation 8 the br - фото 805is equal to a solution of the Schrödinger equation 8 the bracket on the first line of - фото 806of the Schrödinger equation:

(8) Quantum Mechanics Volume 3 - изображение 807

the bracket on the first line of (7)obviously cancels out and we have:

(9) Quantum Mechanics Volume 3 - изображение 808

Integrating by parts the second term 2 of the bracket in the second line of (7), we get the same form as the first term in the bracket, plus an already integrated term. The final result is then:

(10) where we have used in the second line the fact that the norm of always remains - фото 809

where we have used in the second line the fact that the norm of картинка 810always remains equal to unity. This expression for S is similar to the initial form (7), but without the real part.

2-b. Stationarity

Suppose now картинка 811has an arbitrary time dependence between t 0and t 1, while keeping its norm constant, as imposed by (6); the functional then takes a certain value S , a priori different from zero. Let us see under which conditions S will be stationary when Quantum Mechanics Volume 3 - изображение 812changes by an infinitely small amount Quantum Mechanics Volume 3 - изображение 813:

(11) Quantum Mechanics Volume 3 - изображение 814

For what follows, it will be convenient to assume that the variation картинка 815is free; we therefore have to ensure that the norm of картинка 816remains constant, equal to unity 3 . We introduce Lagrange multipliers (Appendix V) λ( t ) to control the square of the norm at every time between t 0and t 1, and we look for the stationarity of a function where the sum of constraints has been added. This sum introduces an integral, and we the function in question is:

(12) where λ t is a real function of the time t The variation of - фото 817

where λ( t ) is a real function of the time t .

The variation картинка 818of картинка 819to first order is obtained by inserting (11)in (10). It yields the sum of a first term картинка 820containing the ket картинка 821and of another containing the bra 13 We now imagine another variation for - фото 822containing the bra Quantum Mechanics Volume 3 - изображение 823:

(13) Quantum Mechanics Volume 3 - изображение 824

We now imagine another variation for the ket:

(14) Quantum Mechanics Volume 3 - изображение 825

which yields a variation картинка 826of картинка 827; in this second variation, the term in картинка 828becomes Quantum Mechanics Volume 3 - изображение 829, whereas the term in Quantum Mechanics Volume 3 - изображение 830becomes Quantum Mechanics Volume 3 - изображение 831. Now, if the functional is stationary in the vicinity of картинка 832, the two variations картинка 833and картинка 834are necessarily zero, as are also картинка 835and картинка 836. In those combinations, only terms in картинка 837appear for the first one, and in картинка 838for the second; consequently they must both be zero. As a result, we can write the stationarity conditions with respect to variations of the bra and the ket separately.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanics, Volume 3»

Представляем Вашему вниманию похожие книги на «Quantum Mechanics, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanics, Volume 3»

Обсуждение, отзывы о книге «Quantum Mechanics, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x