Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3

Здесь есть возможность читать онлайн «Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanics, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanics, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications.<br> <br> * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë<br> * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly<br> * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications<br> <br> Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms.<br> <br> Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics.<br> <br> Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.<br>

Quantum Mechanics, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanics, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The variational energy can be computed in the same way as in § 1-e. Multiplying on the left equation (77)by the bra 〈 φn |, we get:

(79) After summing over the subscript n we obtain 80 Taking into account - фото 760

After summing over the subscript n , we obtain:

(80) Taking into account 51 53 and 61 we get 81 where the particle - фото 761

Taking into account (51), (53), and (61), we get:

(81) where the particle interaction energy is counted twice To compute the energy - фото 762

where the particle interaction energy is counted twice. To compute the energy картинка 763, we can eliminate between 26and this relation and we finally obtain 82 2d HartreeFock - фото 764between (26)and this relation and we finally obtain:

(82) 2d HartreeFock equations for electrons Assume the fermions we are studying - фото 765

2-d. Hartree-Fock equations for electrons

Assume the fermions we are studying are particles with spin 1/2, electrons for example. The basis {| r〉} of the individual states used in § 1 must be replaced by the basis formed with the kets {| r, ν )}, where ν is the spin index, which can take 2 distinct values noted ±1/2, or more simply ±. To the summation over d 3 r we must now add a summation over the 2 values of the index spin ν . A vector | φ 〉 in the individual state space is now written:

(83) Quantum Mechanics Volume 3 - изображение 766

with:

(84) Quantum Mechanics Volume 3 - изображение 767

The variables rand ν play a similar role but the first one is continuous whereas the second is discrete. Writing them in the same parenthesis might hide this difference, and we often prefer noting the discrete index as a superscript of the function φ and write:

(85) Quantum Mechanics Volume 3 - изображение 768

Let us build an N particle variational state картинка 769from N orthonormal states картинка 770, with n =1, 2,.. , N . Each of the картинка 771describes an individual state including the spin and position variables; the first N +values of νn ( n = 1,2,.. N +) are equal to +1/2, the last N –are equal to –1/2, with N ++ N –= N (we assume N +and N -are fixed for the moment but we may allow them to vary later to enlarge the variational family). In the space of the individual states, we introduce a complete basis картинка 772whose first N kets are the картинка 773, but where the subscript k varies from 1 to infinity 7 .

We assume the matrix elements of the external potential V 1to be diagonal for ν ; these two diagonal matrix elements can however take different values картинка 774, which allows including the eventual presence of a magnetic field coupled with the spins. We also assume the particle interaction W 2(1,2) to be independent of the spins, and diagonal in the position representation of the two particles, as is the case, for example, for the Coulomb interaction between electrons. With these assumptions, the Hamiltonian cannot couple states having different particle numbers N +and N –.

Let us see what the general Hartree-Fock equations become in the {| r, ν 〉} representation. In this representation, the effect of the kinetic and potential operators are well known. We just have to compute the effect of the Hartree-Fock potential WHF . To obtain its matrix elements, we use the basis Quantum Mechanics Volume 3 - изображение 775to write the trace in (60):

(86) Quantum Mechanics Volume 3 - изображение 776

As the right-hand side includes the scalar product Quantum Mechanics Volume 3 - изображение 777which is equal to δkp , the sum over k disappears and we get:

(87) i We first deal with the direct term contribution hence ignoring in the - фото 778

(i) We first deal with the direct term contribution, hence ignoring in the bracket the term in P ex(1, 2). We can replace the ket by its expression 88 As the operator is diagonal in the position - фото 779by its expression:

(88) As the operator is diagonal in the position representation we can write 89 - фото 780

As the operator is diagonal in the position representation, we can write:

(89) The direct term of 87is then written 90 where the scalar product of the - фото 781

The direct term of (87)is then written:

(90) where the scalar product of the bra and the ket is equal to We finally - фото 782

where the scalar product of the bra and the ket is equal to We finally obtain 91 with 92 Thi - фото 783. We finally obtain:

(91) with 92 This component of the mean field Hartree term contains a sum - фото 784

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanics, Volume 3»

Представляем Вашему вниманию похожие книги на «Quantum Mechanics, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanics, Volume 3»

Обсуждение, отзывы о книге «Quantum Mechanics, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x