Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3

Здесь есть возможность читать онлайн «Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanics, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanics, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications.<br> <br> * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë<br> * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly<br> * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications<br> <br> Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms.<br> <br> Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics.<br> <br> Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.<br>

Quantum Mechanics, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanics, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

We assume as before that the N -particle variational ket Quantum Mechanics Volume 3 - изображение 691is written as:

(47) Quantum Mechanics Volume 3 - изображение 692

This ket is derived from N individual orthonormal kets | θk 〉, but these kets can now describe particles having an arbitrary spin. Consider the orthonormal basis {| θk 〉} of the one-particle state space, in which the set of | θi 〉 ( i = 1, 2, … N ) was completed by other orthonormal states. The projector PN onto the subspace Quantum Mechanics Volume 3 - изображение 693is the sum of the projections onto the first N kets | θi 〉:

(48) Quantum Mechanics Volume 3 - изображение 694

This is simply the one-particle density operator defined in § B-4 of Chapter XV(normalized by a trace equal to the particle number N and not to one), as we now show. Relation (B-24) of that chapter can be written in the | θk 〉 basis:

(49) Quantum Mechanics Volume 3 - изображение 695

where the average value картинка 696is taken in the quantum state (47). In this kind of Fock state, the average value is different from zero only when the creation operator reconstructs the population destroyed by the annihilation operator, hence if k = l , in which case it is equal to the population nk of the individual states | θk 〉. In the variational ket (47), all the populations are zero except for the first N states | θi 〉 ( i = 1, 2, … N ), where they are equal to one. Consequently, the one-particle density operator is represented by a matrix, diagonal in the basis | θi 〉, and whose N first elements on the diagonal are all equal to one. It is indeed the matrix associated with the projector PN , and we can write:

(50) картинка 697

As we shall see, all the average values useful in our calculation can be simply expressed as a function of this operator.

2-a. Average energy

We now evaluate the different terms included in the average energy, starting with the terms containing one-particle operators.

α. Kinetic and external potential energy

Using relation (B-12) of Chapter XV, we obtain for the average kinetic energy 〈 Ĥ 0〉:

(51) The same argument as that for the evaluation of the matrix elements 49shows - фото 698

The same argument as that for the evaluation of the matrix elements (49)shows that the average value картинка 699in the state (47)is only different from zero if r = s ; in that case, it is equal to one when rN , and to zero otherwise. This leads to:

(52) The subscript 1 was added to the trace to underline the fact that this trace is - фото 700

The subscript 1 was added to the trace to underline the fact that this trace is taken in the one-particle state space and not in the Fock space. The two operators included in the trace only act on that same particle, numbered arbitrarily 1; the subscript 1 could obviously be replaced by the subscript of any other particle, since they all play the same role. The average potential energy coming from the external potential is computed in a similar way and can be written as:

(53) β Average interaction energy HartreeFock potential operator The average - фото 701

β. Average interaction energy, Hartree-Fock potential operator

The average interaction energy can be computed using the general expression C16 of Chapter XVfor any - фото 702can be computed using the general expression (C-16) of Chapter XVfor any two-particle operator, which yields:

(54) Quantum Mechanics Volume 3 - изображение 703

For the average value Quantum Mechanics Volume 3 - изображение 704in the Fock state картинка 705to be different from zero, the operator must leave unchanged the populations of the individual states | θn 〉 and | θq 〉. As in § C-5-b of Chapter XV, two possibilities may occur: either r = n and s = q (the direct term), or r = q and s = n (the exchange term). Commuting some of the operators, we can write:

(55) where nr and ns are the respective populations of the states θr and θs - фото 706

where nr and ns are the respective populations of the states | θr 〉 and | θs 〉. Now these populations are different from zero only if the subscripts r and s are between 1 and N , in which case they are equal to 1 (note also that we must have rs to avoid a zero result). We finally get 5 :

(56) the constraint i j may be ignored since the righthand side is equal to zero - фото 707

(the constraint ij may be ignored since the right-hand side is equal to zero in this case). Here again, the subscripts 1 and 2 label two arbitrary, but different particles, that could have been labeled arbitrarily. We can therefore write:

(57) where P ex12 is the exchange operator between particle 1 and 2 the - фото 708

where P ex(1,2) is the exchange operator between particle 1 and 2 (the transposition which permutes them). This result can be written in a way similar to (53)by introducing a “Hartree-Fock potential” WHF , similar to an external potential acting in the space of particle 1; this potential is defined as the operator having the matrix elements:

(58) This operator is Hermitian since as the two operators P exand W 2are - фото 709

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanics, Volume 3»

Представляем Вашему вниманию похожие книги на «Quantum Mechanics, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanics, Volume 3»

Обсуждение, отзывы о книге «Quantum Mechanics, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x