Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3

Здесь есть возможность читать онлайн «Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanics, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanics, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications.<br> <br> * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë<br> * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly<br> * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications<br> <br> Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms.<br> <br> Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics.<br> <br> Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.<br>

Quantum Mechanics, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanics, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

We now vary картинка 627to determine the conditions leading to a stationary value of the total energy 26 where the three terms in this summation are given by 15 16and - фото 628:

(26) where the three terms in this summation are given by 15 16and 18 Let us - фото 629

where the three terms in this summation are given by (15), (16)and (18). Let us vary one of the kets | θk 〉, k being arbitrarily chosen between 1 and N :

(27) Quantum Mechanics Volume 3 - изображение 630

or, in terms of an individual wave function:

(28) Quantum Mechanics Volume 3 - изображение 631

This will yield the following variations:

(29) and 30 As for the variation of we must take fr - фото 632

and:

(30) As for the variation of we must take from 18two contributions the first - фото 633

As for the variation of картинка 634, we must take from (18)two contributions: the first one from the terms i = k , and the other from the terms j = k . These contributions are actually equal as they only differ by the choice of a dummy subscript. The factor 1/2 disappears and we get:

(31) The variation of is simply the sum of 29 30and 31 We now consider - фото 635

The variation of is simply the sum of 29 30and 31 We now consider variations δθk which - фото 636is simply the sum of (29), (30)and (31).

We now consider variations δθk , which can be written as:

(32) where δε is a first order infinitely small parameter These variations are - фото 637

(where δε is a first order infinitely small parameter). These variations are proportional to the wave function of one of the non-occupied states, which was added to the occupied states to form a complete orthonormal basis; the phase χ is an arbitrary parameter. Such a variation does not change, to first order, either the norm of | θk 〉, or its scalar product with all the occupied states lN ; it therefore leaves unchanged our assumption that the occupied states basis is orthonormal. The first order variation of the energy картинка 638is obtained by inserting δθk and its complex conjugate картинка 639into (29), (30)and (31); we then get terms in eiχ in the first case, and terms in e–iχ in the second. For картинка 640to be stationary, its variation must be zero to first order for any value of χ ; now the sum of a term in eiχ and another in eiχ will be zero for any value of χ only if both terms are zero. It follows that we can impose картинка 641to be zero (stationary condition) considering the variations of δθk and картинка 642to be independent. Keeping only the terms in we obtain the stationary condition of the variational energy 33 or - фото 643, we obtain the stationary condition of the variational energy:

(33) or taking 20into account 34 This relation can also be written as 35 - фото 644

or, taking (20)into account:

(34) This relation can also be written as 35 where the integrodifferential - фото 645

This relation can also be written as::

(35) where the integrodifferential operator is defined by its action on an - фото 646

where the integro-differential operator is defined by its action on an arbitrary function θ r 36 This operator - фото 647is defined by its action on an arbitrary function θ ( r):

(36) This operator depends on the diagonal r PN r and nondiagonal r PN - фото 648

This operator depends on the diagonal 〈 r′| PN | r′〉 and non-diagonal 〈 r′| PN | r′〉 spatial correlation functions associated with the set of states occupied by the N fermions.

Relation (35)thus shows that the action of the differential operator картинка 649on the function θk ( r) yields a function orthogonal to all the functions θl ( r) for l > N . This means that the function картинка 650only has components on the wave functions of the occupied states: it is a linear combination of these functions. Consequently, for the energy картинка 651to be stationary there is a simple condition: the invariance under the action of the integro-differential operator картинка 652of the N -dimensional vector space картинка 653, spanned by all the linear combinations of the functions θi ( r) with i = 1, 2, .. N .

Comment:

One could wonder why we limited ourselves to the variations δθk written in (32), proportional to non-occupied individual states. The reason will become clearer in § 2, where we use a more general method that shows directly which variations of each individual states are really useful to consider (see in particular the discussion at the end of § 2-a). For now, it can be noted that choosing a variation δθk proportional to the same wave function θk ( r) would simply change its norm or phase, and therefore have no impact on the associated quantum state (in addition, a change of norm would not be compatible with our hypotheses, as in the computation of the average values we always assumed the individual states to remain normalized). If the state does not change, the energy картинка 654must remain constant and writing a stationary condition is pointless. Similarly, to give θk ( r) a variation proportional to another occupied wave function θl ( r) (where l is included between 1 and N ) is just as useless, as we now show. In this operation, the creation operator картинка 655acquires a component on картинка 656( Chapter XV, § A-6), but the state vector expression (1)remains unchanged. The state vector thus acquire a component including the square of a creation operator, which is zero for fermions. Consequently, the stationarity of the energy is automatically ensured in this case.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanics, Volume 3»

Представляем Вашему вниманию похожие книги на «Quantum Mechanics, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanics, Volume 3»

Обсуждение, отзывы о книге «Quantum Mechanics, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x