Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3

Здесь есть возможность читать онлайн «Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanics, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanics, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications.<br> <br> * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë<br> * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly<br> * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications<br> <br> Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms.<br> <br> Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics.<br> <br> Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.<br>

Quantum Mechanics, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanics, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(10) where the two summations over r and s range from 1 to D The average value in - фото 607

where the two summations over r and s range from 1 to D . The average value in of the kinetic energy can then be written 11 which contains the scalar - фото 608of the kinetic energy can then be written:

(11) which contains the scalar product of the ket 12 by the bra 13 - фото 609

which contains the scalar product of the ket:

(12) by the bra 13 Note however that in the ket the action of the annihilation - фото 610

by the bra:

(13) Note however that in the ket the action of the annihilation operator aθs - фото 611

Note however that in the ket, the action of the annihilation operator aθs yields zero unless it acts on a ket where the individual state is already occupied; consequently, the result will be different from zero only if the state | θS 〉 is included in the list of the N states | θ 1〉, | θ 2〉, ….| θN 〉. Taking the Hermitian conjugate of (13), we see that the same must be true for the state | θr 〉, which must be included in the same list. Furthermore, if rs the resulting kets have different occupation numbers, and are thus orthogonal. The scalar product will therefore only differ from zero if r = s , in which case it is simply equal to 1. This can be shown by moving to the front the state | θr 〉 both in the bra and in the ket; this will require two transpositions with two sign changes which cancel out, or none if the state | θr 〉 was already in the front. Once the operators have acted, the bra and the ket correspond to exactly the same occupied states and their scalar product is 1. We finally get:

(14) Consequently the average value of the kinetic energy is simply the sum of the - фото 612

Consequently, the average value of the kinetic energy is simply the sum of the average kinetic energy in each of the occupied states | θi 〉.

For spinless particles, the kinetic energy operator is actually a differential operator – ħ 2Δ/2 m acting on the individual wave functions. We therefore get:

(15) β Potential energy As the potential energy is also a oneparticle operator - фото 613

β. Potential energy

As the potential energy is also a oneparticle operator its average value can be computed in a similar - фото 614is also a one-particle operator, its average value can be computed in a similar way. We obtain:

(16) that is for spinless particles 17 As before the result is simply the sum - фото 615

that is, for spinless particles:

(17) As before the result is simply the sum of the average values associated with - фото 616

As before, the result is simply the sum of the average values associated with the individual occupied states.

ϒ. Interaction energy

The average value of the interaction energy картинка 617in the state картинка 618has already been computed in § C-5 of Chapter XV. We just have to replace, in the relations (C-28) as well as (C-32) to (C-34) of that chapter, the ni by 1 for all the occupied states | θi 〉, by zero for the others, and to rename the wave functions ui ( r) as θi ( r). We then get:

(18) We have left out the condition i j no longer useful since the i j terms are - фото 619

We have left out the condition ij no longer useful since the i = j terms are zero. The second line of this equation contains the sum of the direct and the exchange terms.

The result can be written in a more concise way by introducing the projector PN over the subspace spanned by the N kets | θi 〉:

(19) Quantum Mechanics Volume 3 - изображение 620

Its matrix elements are:

(20) This leads to 21 Comment The matrix elements of PN are actually equal - фото 621

This leads to:

(21) Comment The matrix elements of PN are actually equal to the spatial - фото 622

Comment:

The matrix elements of PN are actually equal to the spatial non-diagonal correlation function G 1( r, r′), which will be defined in Chapter XVI(§ B-3-a). This correlation function can be expressed as the average value of the product of field operators Ψ( r):

(22) Quantum Mechanics Volume 3 - изображение 623

For a system of N fermions in the states | θ 1〉, | θ 2〉, ..,| θN 〉, we can write:

(23) Inserting this relation in 18we get 24 Comparison with relation C28 - фото 624

Inserting this relation in (18)we get:

(24) Comparison with relation C28 of Chapter XV which gives the same average - фото 625

Comparison with relation (C-28) of Chapter XV, which gives the same average value, shows that the right-hand side bracket contains the two-particle correlation function G 2( r, r′). For a Fock state, this function can therefore be simply expressed as two products of one-particle correlation functions at two points:

(25) 1c Optimization of the variational wave function We now vary to determine - фото 626

1-c. Optimization of the variational wave function

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanics, Volume 3»

Представляем Вашему вниманию похожие книги на «Quantum Mechanics, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanics, Volume 3»

Обсуждение, отзывы о книге «Quantum Mechanics, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x