Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3

Здесь есть возможность читать онлайн «Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanics, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanics, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications.<br> <br> * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë<br> * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly<br> * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications<br> <br> Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms.<br> <br> Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics.<br> <br> Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.<br>

Quantum Mechanics, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanics, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

However, be it in atoms or in solids, the repulsion between electrons plays an essential role. Neglecting it would lead us to conclude, for example, that, as Z increases, the size of atoms decreases due to the attractive effect of the nucleus, whereas the opposite occurs 2 ! For N interacting particles, even without taking the spin into account, an exact computation would require solving a Schrödinger equation in a 3 N -dimensional space; this is clearly impossible when N becomes large, even with the most powerful computer. Hence, approximation methods are needed, and the most common one is the Hartree-Fock method, which reduces the problem to solving a series of 3-dimensional equations. It will be explained in this complement for fermionic particles.

The Hartree-Fock method is based on the variational approximation (Complement E XI), where we choose a trial family of state vectors, and look for the one that minimizes the average energy. The chosen family is the set of all possible Fock states describing the system of N fermions. We will introduce and compute the “self-consistent” mean field in which each electron moves; this mean field takes into account the repulsion due to the other electrons, hence justifying the central field method discussed in Complement A XIV. This method applies not only to the atom’s ground state but also to all its stationary states. It can also be generalized to many other systems such as molecules, for example, or to the study of the ground level and excited states of nuclei, which are protons and neutrons in bound systems.

This complement presents the Hartree-Fock method in two steps, starting in § 1 with a simple approach in terms of wave functions, which is then generalized in § 2 by using Dirac notation and projector operators. The reader may choose to go through both steps or go directly to the second. In § 1, we deal with spinless particles, which allows discussing the basic physical ideas and introducing the mean field concept keeping the formalism simple. A more general point of view is exposed in § 2, to clarify a number of points and to introduce the concept of a one-particle (with or without spin) effective Hartree-Fock Hamiltonian. This Hamiltonian reduces the interactions with all the other particles to a mean field operator. More details on the Hartree-Fock methods, and in particular their relations with the Wick theorem, can be found in Chapters 7 and 8 of reference [5].

1. Foundation of the method

Let us first expose the foundation of the Hartree-Fock method in a simple case where the particles have no spin (or are all in the same individual spin state) so that no spin quantum number is needed to define their individual states, specified by their wave functions. We introduce the notation and define the trial family of the N -particle state vectors.

1-a. Trial family and Hamiltonian

We choose as the trial family for the state of the N -fermion system all the states that can be written as:

(1) Quantum Mechanics Volume 3 - изображение 593

where Quantum Mechanics Volume 3 - изображение 594are the creation operators associated with a set of normalized individual states | θ 1〉, | θ 2〉, | θ N〉, all orthogonal to each other (and hence distinct). The state картинка 595is therefore normalized to 1. This set of individual states is, at the moment, arbitrary; it will be determined by the following variational calculation.

For spinless particles, the corresponding wave function Quantum Mechanics Volume 3 - изображение 596can be written in the form of a Slater determinant (Chapter XIV, § C-3- c - β ):

(2) Quantum Mechanics Volume 3 - изображение 597

The system Hamiltonian is the sum of the kinetic energy, the one-body potential energy and the interaction energy:

(3) Quantum Mechanics Volume 3 - изображение 598

The first term, Ĥ 0, is the operator associated with the fermion kinetic energy, sum of the individual kinetic energies:

(4) Quantum Mechanics Volume 3 - изображение 599

where m is the particle mass and P q, the momentum operator of particle q . The second term, Quantum Mechanics Volume 3 - изображение 600, is the operator associated with their energy in an applied external potential V 1:

(5) Quantum Mechanics Volume 3 - изображение 601

where R qis the position operator of particle q . For electrons with charge qe placed in the attractive Coulomb potential of a nucleus of charge — Zqe positioned at the origin ( Z is the nucleus atomic number), this potential is attractive and equal to:

(6) Quantum Mechanics Volume 3 - изображение 602

where ε 0is the vacuum permittivity. Finally, the term corresponds to their mutual interaction energy 7 For electrons the - фото 603corresponds to their mutual interaction energy:

(7) Quantum Mechanics Volume 3 - изображение 604

For electrons, the function W 2is given by the Coulomb repulsive interaction:

(8) Quantum Mechanics Volume 3 - изображение 605

The expressions given above are just examples; as mentioned earlier, the Hartree-Fock method is not limited to the computation of the electronic energy levels in an atom.

1-b. Energy average value

Since state (1)is normalized, the average energy in this state is given by:

(9) Quantum Mechanics Volume 3 - изображение 606

Let us evaluate successively the contributions of the three terms of (3), to obtain an expression which we will eventually vary.

α. Kinetic energy

Let us introduce a complete orthonormal basis {| θs } of the one-particle state space by adding to the set of states | θi ( i = 1, 2, N ) other orthonormal states; the subscript s now ranges from 1 to D , dimension of this space ( D may be infinite). We can then expand Ĥ 0as in relation (B-12) of Chapter XV:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanics, Volume 3»

Представляем Вашему вниманию похожие книги на «Quantum Mechanics, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanics, Volume 3»

Обсуждение, отзывы о книге «Quantum Mechanics, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x