Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3

Здесь есть возможность читать онлайн «Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanics, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanics, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications.<br> <br> * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë<br> * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly<br> * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications<br> <br> Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms.<br> <br> Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics.<br> <br> Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.<br>

Quantum Mechanics, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanics, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1-d. Equivalent formulation for the average energy stationarity

Operator картинка 657can be diagonalized in the subspace картинка 658, as can be shown 3 from its definition (36)– a more direct demonstration will be given in § 2. We call φn ( r) its eigenfunctions. These functions φn ( r) are linear combinations of the θj ( r) corresponding to the states appearing in the trial ket (1), and therefore lead to the same N -particle state, because of the antisymmetrization 4 . The basis change from the θi ( r) to the φn ( r) has no effect on the projector PN onto to the subspace whose matrix elements appearing in 36can be expressed in a way similar to - фото 659, whose matrix elements appearing in (36)can be expressed in a way similar to those in (20):

(37) Consequently the eigenfunctions of the operator obey the equations 38 - фото 660

Consequently, the eigenfunctions of the operator obey the equations 38 where are the associated eigenvalues - фото 661obey the equations:

(38) where are the associated eigenvalues These relations are called the - фото 662

where картинка 663are the associated eigenvalues. These relations are called the “Hartree-Fock equations”.

For the average total energy associated with a state such as (1)to be stationary, it is therefore necessary for this state to be built from N individual states whose orthogonal wave functions φ 1, φ 2, .. , φN are solutions of the Hartree-Fock equations (38)with n = 1, 2, .. , N . Conversely, this condition is sufficient since, replacing the θj ( r) by solutions φn ( r) of the Hartree-Fock equations in the energy variation (34)yields the result:

(39) Quantum Mechanics Volume 3 - изображение 664

which is zero for all δφk ( r) variations, since, according to (32), they must be orthogonal to the N solutions φn ( r). Conditions (38)are thus equivalent to energy stationarity.

1-e. Variational energy

Assume we found a series of solutions for the Hartree-Fock equations, i.e. a set of N eigenfunctions φn ( r) with the associated eigenvalues картинка 665. We still have to compute the minimal variational energy of the N -particle system. This energy is given by the sum (26)of the three terms of kinetic, potential and interaction energies obtained by replacing in (15), (16)and (18)the θi ( r) by the eigenfunctions φn ( r):

(40) the subscripts HF indicate we are dealing with the average energies after the - фото 666

(the subscripts HF indicate we are dealing with the average energies after the Hartree-Fock optimization, which minimizes the variational energy). Intuitively, one could expect this total energy to be simply the sum of the energies картинка 667, but, as we are going to show, this is not the case. Multiplying the left-hand side of equation (38)by and after integration over d 3 r we get 41 We then take a summation over - фото 668and after integration over d 3 r , we get:

(41) We then take a summation over the subscript n and use 15 16and 18 the - фото 669

We then take a summation over the subscript n , and use (15), (16)and (18), the θ being replaced by the φ :

(42) This expression does not yield the stationary value of the total energy but - фото 670

This expression does not yield the stationary value of the total energy, but rather a sum where the particle interaction energy is counted twice. From a physical point of view, it is clear that if each particle energy is computed taking into account its interaction with all the others, and if we then add all these energies, we get an expression that includes twice the interaction energy associated with each pair of particles.

The sum of the картинка 671does contain, however, useful information that enables us to avoid computing the interaction energy contribution to the variational energy. Eliminating between 40and 42 we get 43 where the interaction energy is no longer - фото 672between (40)and (42), we get:

(43) Quantum Mechanics Volume 3 - изображение 673

where the interaction energy is no longer present. One can then compute 〈 Ĥ 0〉 HFand Quantum Mechanics Volume 3 - изображение 674using the solutions of the Hartree-Fock equations (38), without worrying about the interaction energy. Using (15)and (17)in this relation, we can write the total energy as 44 The total energy is thus half the sum of the of the - фото 675as:

(44) The total energy is thus half the sum of the of the average kinetic energy - фото 676

The total energy is thus half the sum of the картинка 677, of the average kinetic energy, and finally of the one-body average potential energy.

1-f. Hartree-Fock equations

Equation (38)may be written as:

(45) where the direct V dlr r and exchange V ex r r potentials are defined as - фото 678

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanics, Volume 3»

Представляем Вашему вниманию похожие книги на «Quantum Mechanics, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanics, Volume 3»

Обсуждение, отзывы о книге «Quantum Mechanics, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x