Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3

Здесь есть возможность читать онлайн «Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanics, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanics, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications.<br> <br> * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë<br> * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly<br> * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications<br> <br> Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms.<br> <br> Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics.<br> <br> Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.<br>

Quantum Mechanics, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanics, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

This operator is Hermitian, since, as the two operators P exand W 2are Hermitian and commute, we can write:

(59) Furthermore we recognize in 58the matrix element of a partial trace on - фото 710

Furthermore, we recognize in (58)the matrix element of a partial trace on particle 2 (Complement E III, § 5-b):

(60) where the projector PN has been introduced inside the trace to limit the sum - фото 711

where the projector PN has been introduced inside the trace to limit the sum over j to its first N terms, as in (57). The one-particle operator WHF (1) is thus the partial trace over a second particle (with the arbitrary label 2) of a product of operators acting on both particles. As the summation over j is now taken into account, we are left in (57)with a summation over i , which introduces a trace over the remaining particle 1, and we get:

(61) This average value depends on the subspace chosen with the variational ket in - фото 712

This average value depends on the subspace chosen with the variational ket картинка 713in two ways: explicitly as above, via the projector PN (1) that shows up in the average value (61), but also implicitly via the definition of the Hartree-Fock potential in (60).

ϒ. Role of the one-particle reduced density operator

All the average values can be expressed in terms of the projector PN onto the subspace картинка 714of the space the individual states spanned by the N individual states | θ 1〉, | θ 2〉, ….| θN 〉, which means, according to (50), in terms of the one-particle reduced density operator картинка 715. Hence it is this operator that is the pertinent variable to optimize rather than the set of individual states: certain variations of those states do not change PN , and are meaningless for our purpose.

Furthermore, the choice of the trial ket картинка 716is equivalent to that of PN . In other words, the variational ket картинка 717built in (1)does not depend on the basis chosen in the subspace картинка 718: if we choose in this subspace any orthonormal basis {| uj 〉} other than the {| θj 〉} basis, and if we replace in (1)the картинка 719by the картинка 720, the ket will remain the same (to within a non-relevant phase factor) as we now show. As seen in § A-6 of Chapter XV, each operator картинка 721is a linear combination of the картинка 722, so that in the product of all the картинка 723( j = 1, 2, .. N ) we will find products of N operators картинка 724. Relation (A-43) of Chapter XVhowever indicates that the squares of any creation operators are zero, which means that the only non-zero products are those including once and only once each of the N different operators картинка 725. Each term is then proportional to the ket картинка 726built from the картинка 727. Consequently, the two variational kets built from the two bases are necessarily proportional. As definition (1)ensures they are also normalized, they can only differ by a phase factor, which means they are equivalent from a physical point of view. It is thus the operator картинка 728that best embodies the trial ket картинка 729.

2-b. Optimization of the one-particle density operator

We now vary to look for the stationary conditions for the total energy 62 We therefore - фото 730to look for the stationary conditions for the total energy:

(62) Quantum Mechanics Volume 3 - изображение 731

We therefore consider the variation:

(63) Quantum Mechanics Volume 3 - изображение 732

which leads to the following variations for the average values of the one-particle operators:

(64) As for the interaction energy we get two terms 65 which are actually - фото 733

As for the interaction energy, we get two terms:

(65) which are actually equal since 66 and we recognize in the righthand side - фото 734

which are actually equal since:

(66) Quantum Mechanics Volume 3 - изображение 735

and we recognize in the right-hand side of this expression the trace:

(67) Quantum Mechanics Volume 3 - изображение 736

As we can change the label of the particle from 2 to 1 without changing the trace, the two terms of the interaction energy are equal. As a result, we end up with the energy variation:

(68) Quantum Mechanics Volume 3 - изображение 737

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanics, Volume 3»

Представляем Вашему вниманию похожие книги на «Quantum Mechanics, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanics, Volume 3»

Обсуждение, отзывы о книге «Quantum Mechanics, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x