Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3

Здесь есть возможность читать онлайн «Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanics, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanics, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications.<br> <br> * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë<br> * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly<br> * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications<br> <br> Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms.<br> <br> Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics.<br> <br> Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.<br>

Quantum Mechanics, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanics, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

To vary the projector PN , we choose a value j 0of j and make the change:

(69) Quantum Mechanics Volume 3 - изображение 738

where | δθ 〉 is any ket from the space of individual states, and χ any real number; no other individual state vector varies except for | θ j0〉. The variation of PN is then written as:

(70) We assume δθ has no components on any θi that is no components in - фото 739

We assume | δθ 〉 has no components on any | θi 〉, that is no components in картинка 740, since this would change neither εN , nor the corresponding projector PN . We therefore impose:

(71) which also implies that the norm of θ j0 remains constant 6 to first order - фото 741

which also implies that the norm of | θ j0〉 remains constant 6 to first order in | δθ 〉. Inserting (70)into (68), we obtain:

(72) For the energy to be stationary this variation must remain zero whatever the - фото 742

For the energy to be stationary, this variation must remain zero whatever the choice of the arbitrary number χ . Now the linear combination of two exponentials e iχand e –iχwill remain zero for any value of χ only if the two factors in front of the exponentials are zero themselves. As each term can be made equal to zero separately, we obtain:

(73) This relation must be satisfied for any ket δθ orthogonal to the subspace - фото 743

This relation must be satisfied for any ket | δθ 〉 orthogonal to the subspace This means that if we define the oneparticle HartreeFock operator as 74 - фото 744. This means that if we define the one-particle Hartree-Fock operator as:

(74) the stationary condition for the total energy is simply that the ket HHF θ - фото 745

the stationary condition for the total energy is simply that the ket HHF | θ j0〉 must belong to Quantum Mechanics Volume 3 - изображение 746:

(75) Quantum Mechanics Volume 3 - изображение 747

As this relation must hold for any | θ j0〉 chosen among the | θ 1〉, | θ 2〉, ….| θN 〉, it follows that the subspace картинка 748is stable under the action of the operator (74).

2-c. Mean field operator

We can then restrict the operator HHF to that subspace:

(76) This operator acting in the subspace spanned by the N kets θj is a - фото 749

This operator, acting in the subspace картинка 750spanned by the N kets | θj 〉, is a Hermitian linear operator, hence it can be diagonalized. We call | φn 〉 its eigenvectors ( n = 1, 2, .. N ), which are linear combinations of the kets | θj 〉. The stationary condition for the energy (75)amounts to imposing the | φn 〉 to be not only eigenvectors of картинка 751, but also of the operator HHF defined by (74)in the entire one-particle state space (without the restriction to Quantum Mechanics Volume 3 - изображение 752); consequently, the | φn 〉 must obey:

(77) Quantum Mechanics Volume 3 - изображение 753

Operator HHF is defined in (74), where the operator WHF is given by (60)and depends on the projector PN . This last operator may be expressed as a function of the | φn 〉 in the same way as with the | θi 〉, and relation (48)may be replaced by:

(78) Quantum Mechanics Volume 3 - изображение 754

Relations (77), together with definition (60)where (78)has been inserted, are a set of equations allowing the self-consistent determination of the | φn 〉; they are called the Hartree-Fock equations. This operator form (77)is simpler than the one obtained in § 1-c; it emphasizes the similarity with the usual eigenvalue equation for a single particle moving in an external potential, illustrating the concept of a self-consistent mean field. One must keep in mind, however, that via the projector (78)included in WHF , this particle moves in a potential depending on the whole set of states occupied by all the particles. Remember also that we did not carry out an exact computation, but merely presented an approximate theory (variational method).

The discussion in § 1-f is still relevant. As the operator WHF depends on the | φn 〉, the Hartree-Fock equations have an intrinsic nonlinear character, which generally requires a resolution by successive approximations. We start from a set of N individual states картинка 755to build a first value of PN and the operator WHF , which are used to compute the Hamiltonian (74). Considering this Hamiltonian now fixed, the Hartree-Fock equations (77)become linear, and can be solved as usual eigenvalue equations. This leads to new values картинка 756for the | φn 〉, and finishes the first iteration. In the second iteration, we use the картинка 757in (78)to compute a new value of the mean field operator WHF ; considering again this operator as fixed, we solve the eigenvalue equation and obtain the second iteration values картинка 758for the | φn 〉, and so on. If the initial values картинка 759are physically reasonable, one can hope for a rapid convergence towards the expected solution of the nonlinear Hartree-Fock equations.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanics, Volume 3»

Представляем Вашему вниманию похожие книги на «Quantum Mechanics, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanics, Volume 3»

Обсуждение, отзывы о книге «Quantum Mechanics, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x