Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3

Здесь есть возможность читать онлайн «Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanics, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanics, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications.<br> <br> * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë<br> * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly<br> * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications<br> <br> Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms.<br> <br> Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics.<br> <br> Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.<br>

Quantum Mechanics, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanics, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

For the term in H ( t ), the calculation is identical to the one we already did in § 1-b of Complement E XV. We first add to the series of orthonormal states | θi ( t )〉 with i = 1, 2, …, N other orthonormal states | θi ( t )〉 with i = N + 1, N + 2, …, to obtain a complete orthonormal basis in the space of individual states. Using this basis, we can express the one-particle and two-particle operators according to relations (B-12) and (C-16) of Chapter XV. This presents no difficulty since the average values of creation and annihilation operator products are easily obtained in a Fock state (they only differ from zero if the product of operators leaves the populations of the individual states unchanged). Relations (52), (53) and (57) of Complement E XVare still valid when the | θi 〉 become time-dependent. We thus get for the average kinetic energy:

(18) for the external potential energy 19 and for the interaction energy 20 - фото 869

for the external potential energy:

(19) and for the interaction energy 20 3b HartreeFock potential We - фото 870

and for the interaction energy:

(20) 3b HartreeFock potential We recognize in 20the diagonal element i k - фото 871

3-b. Hartree-Fock potential

We recognize in (20)the diagonal element ( i = k ) of the Hartree-Fock potential operator WHF (1, t ) whose matrix elements have been defined in a general way by relation (58) of Complement E XV:

(21) We also noted in that complement E XVthat WHF 1 t is a Hermitian operator - фото 872

We also noted in that complement E XVthat WHF (1, t ) is a Hermitian operator.

It is often handy to express the Hartree-Fock potential using a partial trace:

(22) where PN is the projector onto the subspace spanned by the N kets θi t - фото 873

where PN is the projector onto the subspace spanned by the N kets | θi ( t )〉:

(23) As we have seen before this projector is actually nothing bu the oneparticle - фото 874

As we have seen before, this projector is actually nothing bu the one-particle reduced density operator Quantum Mechanics Volume 3 - изображение 875normalized by imposing its trace to be equal to the total particle number N :

(24) Quantum Mechanics Volume 3 - изображение 876

The average value of the interaction energy can then be written as:

(25) 3c Time derivative As for the time derivative term the function it - фото 877

3-c. Time derivative

As for the time derivative term, the function it contains can be written as:

(26) In this summation all terms involving the individual states j other than the - фото 878

In this summation, all terms involving the individual states j other than the state i (which is undergoing the derivation) lead to an expression of the type:

(27) Quantum Mechanics Volume 3 - изображение 879

which equals 1 since this expression is the square of the norm of the state картинка 880, which is simply the Fock state | nj = 1〉. As for the state i , it leads to a factor written in the form of a scalar product in the one-particle state space:

(28) 3d Functional value Regrouping all these results we can write the value of - фото 881

3-d. Functional value

Regrouping all these results, we can write the value of the functional S in the form:

(29) 4 Equations of motion We now vary the ket θk t according to 30 - фото 882

4. Equations of motion

We now vary the ket | θk ( t )〉 according to:

(30) As in complement E XV we will only consider variations δθk t that lead - фото 883

As in complement E XV, we will only consider variations | δθk ( t )〉 that lead to an actual variation of the ket картинка 884; those where | δθk ( t )〉 is proportional to one of the occupied states | θl ( t )〉 with lN yield no change for or at the most to a phase change and are thus irrelevant for the value of S - фото 885(or at the most to a phase change) and are thus irrelevant for the value of S . As we did in relations (32)or (69) of Complement E XV, we assume that:

(31) where δf t is an infinitesimal timedependent function The computation is - фото 886

where δf ( t ) is an infinitesimal time-dependent function.

The computation is then almost identical to that of § 2-b in Complement E XV. When | θk ( t )〉 varies according to (31), all the other occupied states remaining constant, the only changes in the first line of (29)come from the terms i = k . In the second line, the changes come from either the i = k terms, or the j = k terms. As the W 2(1,2) operator is symmetric with respect to the two particles, these variations are the same and their sum cancels the 1/2 factor. All these variations involve terms containing either the ket eiχ | δθk ( t )〉, or the bra 〈 δθk ( t )| e–iχ . Now their sum must be zero for any value of χ, and this is only possible if each of the terms is zero. Inserting the variation (31)of | θk ( t )〉, and canceling the term in e–iχ leads to the following equality:

(32) As we recognize in the function to be integrated the HartreeFock potential - фото 887

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanics, Volume 3»

Представляем Вашему вниманию похожие книги на «Quantum Mechanics, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanics, Volume 3»

Обсуждение, отзывы о книге «Quantum Mechanics, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x