Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3

Здесь есть возможность читать онлайн «Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanics, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanics, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications.<br> <br> * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë<br> * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly<br> * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications<br> <br> Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms.<br> <br> Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics.<br> <br> Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.<br>

Quantum Mechanics, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanics, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Both functions картинка 982and картинка 983increase as a function of μ and, for any given temperature, the total particle number is controlled by the chemical potential. For a large physical system whose energy levels are very close, the orbital part of the discrete sum in (44)can be replaced by an integral. Figure 1of Complement B XVshows the variations of the Fermi-Dirac and Bose-Einstein distributions. We also mentioned that for a boson system, the chemical potential could not exceed the lowest value e 0of the energies el ; when it approaches that value, the population of the corresponding level diverges, which is the Bose-Einstein condensation phenomenon we will come back to in the next complement. For fermions, on the other hand, the chemical potential has no upper boundary, as, whatever its value, the population of states having an energy lower than μ cannot exceed 1.

ϒ. Two particles, distribution functions

We now consider an arbitrary two-particle operator Ĝ and compute its average value with the density operator The general expression of a symmetric twoparticle operator is given by - фото 984. The general expression of a symmetric two-particle operator is given by relation (C-16) of Chapter XV, and we can write:

(45) We follow the same steps as in 2a of Complement E XV we use the mean field - фото 985

We follow the same steps as in § 2-a of Complement E XV: we use the mean field approximation to replace the computation of the average value of a two-particle operator by that of average values for one-particle operators. We can, for example, use relation (43)of Complement B XV, which shows that:

(46) We then get 47 Which according to 40 can also be written as 48 - фото 986

We then get:

(47) Which according to 40 can also be written as 48 where P exis the - фото 987

Which, according to (40), can also be written as:

(48) where P exis the exchange operator between particles 1 and 2 Since 49 and - фото 988

where P exis the exchange operator between particles 1 and 2. Since:

(49) and as the operators 1 and 2 are diagonal in the basis θi - фото 989

and as the operators картинка 990(1) and 2 are diagonal in the basis θi we can write the righthand side of - фото 991(2) are diagonal in the basis | θi 〉, we can write the right-hand side of (48)as:

(50) which is simply a double trace on two particles 1 and 2 This leads to 51 - фото 992

which is simply a (double) trace on two particles 1 and 2. This leads to:

(51) As announced above the average value of the twoparticle operator Ĝ can be - фото 993

As announced above, the average value of the two-particle operator Ĝ can be expressed, within the Hartree-Fock approximation, in terms of the one-particle reduced density operator картинка 994(1); this relation is not linear.

Comment:

The analogy with the computations of Complement Exv becomes obvious if we regroup its equations (57)and (58)and write:

(52) Replacing W 21 2 by G we get a relation very similar to 51 except for - фото 995

Replacing W 2(1, 2) by G , we get a relation very similar to (51), except for the fact that the projectors PN must be replaced by the one-particle operators картинка 996. In § 3-d, we shall come back to the correspondence between the zero and non-zero temperature results.

2-c. Variational grand potential

We now have to compute the grand potential картинка 997written in (30). As the exponential form (28)for the trial operator makes it easy to compute ln we see that the terms in μ cancel out and we get 53 - фото 998, we see that the terms in μ cancel out and we get 53 We now have to compute the average energy with - фото 999cancel out, and we get:

(53) We now have to compute the average energy with the density operator of the - фото 1000

We now have to compute the average energy, with the density operator картинка 1001, of the difference between the Hamiltonians Ĥ and Quantum Mechanics Volume 3 - изображение 1002respectively defined by (1)and (25).

We first compute the trace:

(54) Quantum Mechanics Volume 3 - изображение 1003

starting with the kinetic energy contribution Ĥ 0in (1). We call K 0the individual kinetic energy operator:

(55) картинка 1004

( m is the particle mass). Equality (43)applied to Ĥ 0yields the average kinetic energy when the system is described by 56 This result is easily interpreted each individual state contributes - фото 1005:

(56) This result is easily interpreted each individual state contributes its - фото 1006

This result is easily interpreted; each individual state contributes its average kinetic energy, multiplied by its population.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanics, Volume 3»

Представляем Вашему вниманию похожие книги на «Quantum Mechanics, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanics, Volume 3»

Обсуждение, отзывы о книге «Quantum Mechanics, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x