Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3

Здесь есть возможность читать онлайн «Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanics, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanics, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications.<br> <br> * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë<br> * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly<br> * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications<br> <br> Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms.<br> <br> Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics.<br> <br> Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.<br>

Quantum Mechanics, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanics, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Let us now define a vector J( r, t ) by:

(45) If we compute the divergence of this vector the terms in φ φ cancel - фото 551

If we compute the divergence of this vector, the terms in ▽ φ * · ▽ φ cancel out and we are left with terms identical to the right-hand side of (44), with the opposite sign. This leads to the conservation equation:

(46) J r t is thus the probability current associated with our boson system - фото 552

J( r, t) is thus the probability current associated with our boson system. Integrating over all space, using the divergence theorem, and assuming φ ( r, t ) (hence the current) goes to zero at infinity, we obtain:

(47) Quantum Mechanics Volume 3 - изображение 553

This shows, as announced earlier, that the Gross-Pitaevskii equation conserves the norm of the wave function describing the particle system.

We now set:

(48) Quantum Mechanics Volume 3 - изображение 554

The gradient of this function is written as:

(49) Inserting this result in 45 we get 50 or defining the particle local - фото 555

Inserting this result in (45), we get:

(50) or defining the particle local velocity v r t as the ratio of the current - фото 556

or, defining the particle local velocity v( r, t ) as the ratio of the current to the density:

(51) We have defined a velocity field similar to the velocity field of a fluid in - фото 557

We have defined a velocity field, similar to the velocity field of a fluid in motion in a certain region of space; this field velocity is irrotational (zero curl everywhere).

2-b. Velocity evolution

We now compute the time derivative of this velocity. Taking the derivative of (48), we get:

(52) so that we can isolate the time derivative of α r t by the following - фото 558

so that we can isolate the time derivative of α ( r, t) by the following combination:

(53) The lefthand side of this relation can be computed with the GrossPitaevskii - фото 559

The left-hand side of this relation can be computed with the Gross-Pitaevskii equation (18)and its complex conjugate, as we now show. We first take the divergence of the gradient (49)to obtain the Laplacian:

(54) We then insert the time derivative of φ r t given by the GrossPitaevskii - фото 560

We then insert the time derivative of φ ( r, t ) given by the Gross-Pitaevskii equation (18)in the left-hand side of relation (53), which becomes:

(55) This result must be equal to the righthand side of 53 We therefore get - фото 561

This result must be equal to the right-hand side of (53). We therefore get, after dividing both sides by —2 n ( r, t ):

(56) Using 51 we finally obtain the evolution equation for the velocity v r t - фото 562

Using (51), we finally obtain the evolution equation for the velocity v( r, t ):

(57) This equation looks like the classical Newton equation Its righthand side - фото 563

This equation looks like the classical Newton equation. Its right-hand side includes the sum of the forces corresponding to the external potential V 1( r, t ), and to the mean interaction potential with the other particles gn ( r, t ); the third term in the gradient is the classical kinetic energy gradient 1 (as in Bernoulli’s equation of classical hydrodynamics). The only purely quantum term is the last one, as shown by its explicit dependence on ħ 2. It involves spatial derivatives of n ( r, t ), and is only important if the relative variations δn / n of the density occur over small enough distances (for example, this term is zero for a uniform density). This term is sometimes called “quantum potential”, or “quantum pressure term” or, in other contexts, “Bohm potential”. A frequently used approximation is to consider the spatial variations of n ( r, t ) to be slow, which amounts to ignoring this quantum potential term: this is the so-called Thomas-Fermi approximation.

We have found for a system of N particles a series of properties usually associated with the wave function of a single particle, and in particular a local velocity directly proportional to its phase gradient 2 . The only difference is that, for the N -particle case, we must add to the external potential V 1( r, t ) a local interaction potential gn ( r, t ), which does not significantly change the form of the equations but introduces some nonlinearity that can lead to completely new physical effects.

Figure 2 A repulsive boson gas is contained in a toroidal box All the bosons - фото 564

Figure 2: A repulsive boson gas is contained in a toroidal box. All the bosons are supposed to be initially in the same quantum state describing a rotation around the Oz axis. As we explain in the text, this rotation can only slow down if the system overcomes a potential energy barrier that comes from the repulsive interactions between the particles. This prevents any observable damping of the rotation over any accessible time scale; the fluid rotates indefinitely, and is said to be superfluid .

3. Metastable currents, superfluidity

Consider now a system of repulsive bosons contained in a toroidal box with a rotational axis Oz ( Figure 2); the shape of the torus cross-section (circular, rectangular or other) is irrelevant for our argument and we shall use cylindrical coordinates r , φ and z . We first introduce solutions of the Gross-Pitaevskii equation that correspond to the system rotating inside the toroidal box, around the Oz axis. We will then show that these rotational states are metastable, as they can only relax towards lower energy rotational states by overcoming a macroscopic energy barrier: this is the physical origin of superfluidity.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanics, Volume 3»

Представляем Вашему вниманию похожие книги на «Quantum Mechanics, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanics, Volume 3»

Обсуждение, отзывы о книге «Quantum Mechanics, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x