Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3

Здесь есть возможность читать онлайн «Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanics, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanics, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications.<br> <br> * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë<br> * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly<br> * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications<br> <br> Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms.<br> <br> Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics.<br> <br> Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.<br>

Quantum Mechanics, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanics, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(15) Quantum Mechanics Volume 3 - изображение 518

Using definition (13)of the Gross-Pitaevskii potential, we can compute its effect in the position representation, as in Complement C XV. The same calculations as in §§ 2-b- β and 2-b-ϒ of that complement allow showing that relation (12)becomes the Gross-Pitaevskii time-dependent equation ( N is supposed to be large enough to permit replacing N — 1 by N ):

(16) Quantum Mechanics Volume 3 - изображение 519

Normalizing the wave function φ ( r, t ) to N :

(17) Quantum Mechanics Volume 3 - изображение 520

equation (16)simply becomes:

(18) Comment It can be shown that this time evolution does conserve the norm of - фото 521

Comment:

It can be shown that this time evolution does conserve the norm of | φ ( t )〉, as required by (3). Without the nonlinear term of (16), it would be obvious since the usual Schrödinger equation conserves the norm. With the nonlinear term present, it will be shown in § 2-a that the norm is still conserved.

1-c. Phonons and Bogolubov spectrum

Still dealing with spinless bosons, we consider a uniform system, at rest, of particles contained in a cubic box of edge length L . The external potential V 1( r) is therefore zero inside the box and infinite outside. This potential may be accounted for by forcing the wave function to be zero at the walls. In many cases, it is however more convenient to use periodic boundary conditions (Complement C XIV, § 1-c), for which the wave function of the individual lowest energy state is simply a constant in the box. We thus consider a system in its ground state, whose Gross-Pitaevskii wave function is independent of r:

(19) Quantum Mechanics Volume 3 - изображение 522

with a μ value that satisfies equation (16):

(20) Quantum Mechanics Volume 3 - изображение 523

where n 0= N / L 3is the system density. Comparing this expression with relation (58)of Complement C XVallows us to identify μ with the ground state chemical potential. We assume in this section that the interactions between the particles are repulsive (see the comment at the end of the section):

(21) картинка 524

α. Excitation propagation

Let us see which excitations can propagate in this physical system, whose wave function is no longer the function (19), uniform in space. We assume:

(22) Quantum Mechanics Volume 3 - изображение 525

where δφ ( r, t ) is sufficiently small to be treated to first order. Inserting this expression in the right-hand side of (16), and keeping only the first-order terms, we find in the interaction term the first-order expression:

(23) We therefore get to firstorder 24 which shows that the evolution of δφ - фото 526

We therefore get, to first-order:

(24) which shows that the evolution of δφ r t is coupled to that of δφ r t - фото 527

which shows that the evolution of δφ ( r, t ) is coupled to that of δφ *( r, t ). The complex conjugate equation can be written as:

(25) We can make the timedependent exponentials on the righthand side disappear by - фото 528

We can make the time-dependent exponentials on the right-hand side disappear by defining:

(26) This leads us to a differential equation with constant coefficients which can - фото 529

This leads us to a differential equation with constant coefficients, which can be simply expressed in a matrix form:

(27) where we have used definition 20for μ to replace 2 gn 0 μ by gn 0 If we now - фото 530

where we have used definition (20)for μ to replace 2 gn 0— μ by gn 0. If we now look for solutions having a plane wave spatial dependence:

(28) the differential equation can be written as 29 The eigenvalues ħw k of - фото 531

the differential equation can be written as:

(29) The eigenvalues ħw k of this matrix satisfy the equation 30 that is - фото 532

The eigenvalues ħw ( k) of this matrix satisfy the equation:

(30) that is 31 The solution of this equation is 32 - фото 533

that is:

(31) The solution of this equation is 32 the opposite value is also a - фото 534

The solution of this equation is:

(32) the opposite value is also a solution as expected since we calculate at the - фото 535

(the opposite value is also a solution, as expected since we calculate at the same time the evolution of Quantum Mechanics Volume 3 - изображение 536and of its complex conjugate; we only use here the positive value). Setting:

(33) Quantum Mechanics Volume 3 - изображение 537

relation (32)can be written:

(34) The spectrum given by 32is plotted in Figure 1 where one sees the - фото 538

The spectrum given by (32)is plotted in Figure 1, where one sees the intermediate regime between the linear region at low energy, and the quadratic region at higher energy. It is called the “Bogolubov spectrum” of the boson system.

β. Discussion

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanics, Volume 3»

Представляем Вашему вниманию похожие книги на «Quantum Mechanics, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanics, Volume 3»

Обсуждение, отзывы о книге «Quantum Mechanics, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x