Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3

Здесь есть возможность читать онлайн «Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanics, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanics, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications.<br> <br> * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë<br> * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly<br> * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications<br> <br> Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms.<br> <br> Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics.<br> <br> Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.<br>

Quantum Mechanics, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanics, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(54) Taking relation 51into account this leads to 55 We know Appendix VI - фото 473

Taking relation (51)into account, this leads to:

(55) картинка 474

We know ( Appendix VI, § 2-b) that in the grand canonical ensemble, and at zero temperature, the derivative of the energy with respect to the particle number (for a fixed volume) is equal to the chemical potential. The quantity μ introduced mathematically as a Lagrange multiplier, can therefore be simply interpreted as this chemical potential.

4-b. Healing length

The “healing length” is an important concept that characterizes the way a solution of the time-independent Gross-Pitaevskii equation reacts to a spatial constraint (for example, the solution can be forced to be zero along a wall, or along the line of a vortex core). We now calculate an approximate order of magnitude for this length.

Assuming the potential V 1( r) to be zero in the region of interest, we divide equation (28)by φ ( r) and get:

(56) Consequently the lefthand side of this equation must be independent of r Let - фото 475

Consequently, the left-hand side of this equation must be independent of r. Let us assume φ ( r) is constant in an entire region of space where the density is n 0, independent of r:

(57) картинка 476

but constrained by the boundary conditions to be zero along its border. For the sake of simplicity, we shall treat the problem in one dimension, and assume φ ( r) only depends on the first coordinate x of r; the wave function must then be zero along a plane (supposed to be at x = 0). We are looking for an order of magnitude of the distance ξ over which the wave function goes from a practically constant value to zero, i.e. for the spatial range of the wave function transition regime. In the region where φ ( r) is constant, relation (56)yields:

(58) Figure 1 Variation as a function of the position x of the wave function φ x - фото 477

Figure 1 Variation as a function of the position x of the wave function φ x - фото 478

Figure 1: Variation as a function of the position x of the wave function φ ( x ) in the vicinity of a wall (at x = 0) where it is forced to be zero. This variation occurs over a distance of the order of the healing length ξ defined in (61); the stronger the particle interactions, the shorter that length. As x increases, the wave function tends towards a constant plateau, of coordinate картинка 479, represented as a dashed line .

On the other hand, in the whole region where φ ( r) has significantly decreased, and in particular close to the origin, we have:

(59) Quantum Mechanics Volume 3 - изображение 480

In one dimension 4 , we then get the differential equation:

(60) Quantum Mechanics Volume 3 - изображение 481

whose solutions are sums of exponential functions e ±ix/ξ, with:

(61) Quantum Mechanics Volume 3 - изображение 482

The solution that is zero for x = 0 is the difference between these two exponentials; it is proportional to sin( x / ξ ), a function that starts from zero and increases over a characteristic length ξ . Figure 1shows the wave function variation in the vicinity of the wall where it is forced to be zero.

The stronger the interactions, the shorter this “healing length” ξ ; it varies as the inverse of the square root of the product of the coupling constant g and the density n 0. From a physical point of view, the healing length results from a compromise between the repulsive interaction forces, which try to keep the wave function as constant as possible in space, and the kinetic energy, which tends to minimize its spatial derivative (while the wave function is forced to be zero at x = 0); ξ is equal (except for a 2π coefficient) to the de Broglie wavelength of a free particle having a kinetic energy comparable to the repulsion energy gn 0in the boson system.

4-c. Another trial ket: fragmentation of the condensate

We now show that repulsive interactions do stabilize a boson “condensate” where all the particles occupy the same individual state, as opposed to a “fragmented” state where some particles occupy a different state, which can be very close in energy. Instead of using a trial ket (7), where all the particles form a perfect Bose-Einstein condensate in a single quantum state | θ 〉, we can “fragment” this condensate by distributing the N particles in two distinct individual states. Consequently, we take a trial ket where Na particles are in the state | θ a〉 and Nb = NNa in the orthogonal state | θ b〉:

(62) We now compute the change in the average variational energy In formula - фото 483

We now compute the change in the average variational energy. In formula (29)giving the average kinetic energy, for the operator картинка 484to yield a Fock state identical to we must have either k l a or k l b This leads to 63 The - фото 485, we must have either k = l = a , or k = l = b . This leads to:

(63) The computation of the onebody potential energy is similar and leads to 64 - фото 486

The computation of the one-body potential energy is similar and leads to:

(64) In both cases the contributions of two populated states are proportional to - фото 487

In both cases, the contributions of two populated states are proportional to their respective populations, as expected for energies involving a single particle.

As for the two-body interaction energy, we use again relation (32). It contains the operator картинка 488, which will reconstruct the Fock state картинка 489in the following three cases:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanics, Volume 3»

Представляем Вашему вниманию похожие книги на «Quantum Mechanics, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanics, Volume 3»

Обсуждение, отзывы о книге «Quantum Mechanics, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x