Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3

Здесь есть возможность читать онлайн «Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanics, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanics, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications.<br> <br> * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë<br> * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly<br> * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications<br> <br> Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms.<br> <br> Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics.<br> <br> Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.<br>

Quantum Mechanics, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanics, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

As already mentioned, we shall see in § 4-a that μ is simply the chemical potential.

3. Generalization, Dirac notation

We now go back to the previous line of reasoning, but in a more general case where the bosons may have spins. The variational family is the set of the N -particle state vectors written in (7). The one-body potential may depend on the position r, and, at the same time, act on the spin (particles in a magnetic field gradient, for example).

3-a. Average energy

To compute the average energy value картинка 428, we use a basis {| θ k〉} of the individual state space, whose first vector is | θ 1〉 = | θ 〉.

Using relation (B-12) of Chapter XV, we can write the average value as 29 Since is a Fock state whose only nonzero population i - фото 429as:

(29) Since is a Fock state whose only nonzero population is that of the state θ - фото 430

Since картинка 431is a Fock state whose only non-zero population is that of the state | θ 1〉, the ket картинка 432is non-zero only if l = 1; it is then orthogonal to картинка 433if k ≠ 1. Consequently, the only term left in the summation corresponds to k = l = 1. As the operator Quantum Mechanics Volume 3 - изображение 434multiplies the ket by its population N , we get:

(30) Quantum Mechanics Volume 3 - изображение 435

With the same argument, we can write:

(31) Quantum Mechanics Volume 3 - изображение 436

Using relation (C-16) of Chapter XV, we can express the average value of the interaction energy as 3 :

(32) In this case for the second matrix element to be nonzero both subscripts m - фото 437

In this case, for the second matrix element to be non-zero, both subscripts m and n must be equal to 1 and the same is true for both subscripts k and l (otherwise the operator will yield a Fock state orthogonal to картинка 438). When all the subscripts are equal to 1, the operator multiplies the ket by N N 1 This leads to 33 The average interaction energy is - фото 439by N ( N — 1). This leads to:

(33) The average interaction energy is therefore simply the product of the number of - фото 440

The average interaction energy is therefore simply the product of the number of pairs N ( N —1)/2 that can be formed with N particles and the average interaction energy of a given pair.

We can replace | θ 1〉 by | θ 〉, since they are equal. The variational energy, obtained as the sum of (30), (31)and (33), then reads:

(34) Quantum Mechanics Volume 3 - изображение 441

3-b. Energy minimization

Consider a variation of | θ 〉:

(35) Quantum Mechanics Volume 3 - изображение 442

where | δα 〉 is an arbitrary infinitesimal ket of the individual state space, and χ an arbitrary real number. To ensure that the normalization condition (6)is still satisfied, we impose | δα 〉 and | θ 〉 to be orthogonal:

(36) картинка 443

so that 〈 θ | θ 〉 remains equal to 1 (to the first order in | δα 〉). Inserting (35)into (34)to obtain the variation картинка 444of the variational energy, we get the sum of two terms: the first one comes from the variation of the ket | θ 〉 and is proportional to eiχ the second one comes from the variation of the bra 〈 θ | and is proportional to e–χ . The result has the form:

(37) Quantum Mechanics Volume 3 - изображение 445

The stationarity condition for картинка 446must hold for any arbitrary real value of χ . As before (§ 2-b- α ), it follows that both δc 1and δc 2are zero. Consequently, we can impose the variation to be zero as just the bra ι varies but not the ket θ or the - фото 447to be zero as just the bra 〈 ι | varies (but not the ket | θ 〉), or the opposite.

Varying only the bra, we get the condition:

(38) As the interaction operator W 21 2 is symmetric the last two terms within - фото 448

As the interaction operator W 2(1, 2) is symmetric, the last two terms within the bracket in this equation are equal. We get (after simplification by N ):

(39) 3c GrossPitaevskii equation To deal with equation 39 we introduce the - фото 449

3-c. Gross-Pitaevskii equation

To deal with equation (39), we introduce the Gross-Pitaevskii operator defined as a oneparticle operator whose matrix elements in an arbitrary - фото 450, defined as a one-particle operator whose matrix elements in an arbitrary basis are {| u i〉} given by:

(40) which leads to 41 where v and v are two arbitrary oneparticle - фото 451

which leads to:

(41) where v and v are two arbitrary oneparticle kets this can be shown - фото 452

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanics, Volume 3»

Представляем Вашему вниманию похожие книги на «Quantum Mechanics, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanics, Volume 3»

Обсуждение, отзывы о книге «Quantum Mechanics, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x