Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3

Здесь есть возможность читать онлайн «Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanics, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanics, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications.<br> <br> * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë<br> * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly<br> * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications<br> <br> Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms.<br> <br> Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics.<br> <br> Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.<br>

Quantum Mechanics, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanics, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The first term Quantum Mechanics Volume 3 - изображение 385is simply the sum of the individual kinetic energy operators associated with each of the particles q :

(2) Quantum Mechanics Volume 3 - изображение 386

where:

(3) Quantum Mechanics Volume 3 - изображение 387

( P qis the momentum of particle q ). Similarly, Quantum Mechanics Volume 3 - изображение 388is the sum of the external potential operators V 1( R q), each depending on the position operator R qof particle q :

(4) Quantum Mechanics Volume 3 - изображение 389

Finally, is the sum of the interaction energy associated with all the pairs of - фото 390is the sum of the interaction energy associated with all the pairs of particles:

(5) this summation can also be written as a sum over q q while removing the - фото 391

(this summation can also be written as a sum over q < q ′, while removing the prefactor 1/2).

1-b. Choice of the variational ket (or trial ket)

Let us choose an arbitrary normalized quantum state | θ 〉:

(6) картинка 392

and call Quantum Mechanics Volume 3 - изображение 393the associated creation operator. The N -particle variational kets we consider are defined by the family of all the kets that can be written as:

(7) Quantum Mechanics Volume 3 - изображение 394

where | θ 〉 can vary, only constrained by (6). Consider a basis {| θ k〉} of the individual state space whose first vector is | θ 1〉 = | θ 〉. Relation (A-17) of Chapter XVshows that this ket is simply a Fock state whose only non-zero occupation number is the first one:

(8) An assembly of bosons that occupy the same individual state is called a - фото 395

An assembly of bosons that occupy the same individual state is called a “Bose-Einstein condensate”.

Relation (8)shows that the kets картинка 396are normalized to 1. We are going to vary | θ 〉, and therefore Quantum Mechanics Volume 3 - изображение 397, so as to minimize the average energy:

(9) Quantum Mechanics Volume 3 - изображение 398

2. First approach

We start with a simple case where the bosons have no spin. We can then use the wave function formalism and keep the computations fairly simple.

2-a. Trial wave function for spinless bosons, average energy

Assuming one single individual state to be populated, the wave function Ψ( r 1, r 2,…, r N) is simply the product of N functions θ ( r):

(10) with 11 This wave function is obviously symmetric with respect to the - фото 399

with:

(11) картинка 400

This wave function is obviously symmetric with respect to the exchange of all particles and can be used for a system of identical bosons.

In the position representation, each operator K 0( q ) defined by (3)corresponds to (—ħ 2/2 m ) Δ rq, where Δ rqis the Laplacian with respect to the position r q; consequently, we have:

(12) In this expression all the integral variables others than r qsimply introduce - фото 401

In this expression, all the integral variables others than r qsimply introduce the square of the norm of the function θ ( r), which is equal to 1. We are just left with one integral over r q, in which r qplays the role of a dummy variable, and thus yields a result independent of q . Consequently, all the q values give the same contribution, and we can write:

(13) As for the onebody potential energy a similar calculation yields 14 - фото 402

As for the one-body potential energy, a similar calculation yields:

(14) Finally the interaction energy calculation follows the same steps but we must - фото 403

Finally, the interaction energy calculation follows the same steps, but we must keep two integral variables instead of one. The final result is proportional to the number N ( N — 1)/2 of pairs of integral variables:

(15) The variational average energy is the sum of these three terms 16 - фото 404

The variational average energy is the sum of these three terms 16 2b Variational optimization We - фото 405is the sum of these three terms:

(16) 2b Variational optimization We now optimize the energy we just computed so - фото 406

2-b. Variational optimization

We now optimize the energy we just computed, so as to determine the wave functions θ ( r) corresponding to its minimum value.

α. Variation of the wave function

Let us vary the function θ ( r) by a quantity:

(17) Quantum Mechanics Volume 3 - изображение 407

where δf ( r) is an infinitesimal function and χ an arbitrary number. A priori, δ f ( r) must be chosen to take into account the normalization constraint (6), which forces the integral of the θ ( r) modulus squared to remain constant. We can, however, use the Lagrange multiplier method (Appendix V) to impose this constraint. We therefore introduce the multiplier μ (we shall see in § 4-a that this factor can be interpreted as the chemical potential) and minimize the function:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanics, Volume 3»

Представляем Вашему вниманию похожие книги на «Quantum Mechanics, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanics, Volume 3»

Обсуждение, отзывы о книге «Quantum Mechanics, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x