Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3

Здесь есть возможность читать онлайн «Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanics, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanics, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications.<br> <br> * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë<br> * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly<br> * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications<br> <br> Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms.<br> <br> Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics.<br> <br> Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.<br>

Quantum Mechanics, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanics, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

where | v 〉 and | v′ 〉 are two arbitrary one-particle kets – this can be shown by expanding these two kets on the basis {| u i〉} and using relation (40). Note that this potential operator does not include an exchange term; this term does not exist when the two interacting particles are in the same individual quantum state. Equation (39)then becomes:

(42) This stationarity condition must be verified for any value of the bra δα - фото 453

This stationarity condition must be verified for any value of the bra | δα 〉, with only the constraint that it must be orthogonal to | θ 〉 (according to relation (36)). This means that the ket resulting from the action of the operator Quantum Mechanics Volume 3 - изображение 454on | θ 〉 must have zero components on all the vectors orthogonal to | θ 〉; its only non-zero component must be on the ket | θ 〉 itself, which means it is necessarily proportional to | θ 〉. In other words, | θ 〉 must be an eigenvector of that operator, with eigenvalue μ (real since the operator is Hermitian):

(43) We have just shown that the optimal value φ of θ is the solution of the - фото 455

We have just shown that the optimal value | φ 〉 of | θ 〉 is the solution of the Gross-Pitaevskii equation:

(44) which is a generalization of 28to particles with spin and is valid for one - фото 456

which is a generalization of (28)to particles with spin, and is valid for one- or two-body arbitrary potentials. For each particle, the operator картинка 457represents the mean field created by all the others in the same state | φ 〉.

Comment:

The Gross-Pitaevskii operator is simply a partial trace over the second particle 45 where Pθ 2 is the - фото 458is simply a partial trace over the second particle:

(45) where Pθ 2 is the projection operator Pθ 2 of the state of particle 2 onto - фото 459

where (2) is the projection operator (2) of the state of particle 2 onto | θ 〉:

(46) To show this let us compute the partial trace on the righthand side of 45 - фото 460

To show this, let us compute the partial trace on the right-hand side of (45). To obtain this trace (Complement E III, § 5-b), we choose for particle 2 a set of basis states {| θ n〉} whose first vector | θ 1〉 coincides with | θ 〉:

(47) Replacing Pθ 2 by its value 46yields the product of δik for the scalar - фото 461

Replacing (2) by its value (46)yields the product of δik (for the scalar product associated with particle 1) and δ n1(for the one associated with particle 2). This leads to:

(48) which is simply the initial definition 40of Relation 45is therefore - фото 462

which is simply the initial definition (40)of картинка 463. Relation (45)is therefore another possible definition for the Gross-Pitaevskii potential.

4. Physical discussion

We have established which conditions the variational wave function must obey to make the energy stationary, but we have yet to study the actual value of this energy. This will allow us to show that the parameter μ is in fact the chemical potential associated with the system of interacting bosons. We shall then introduce the concept of a relaxation (or “healing”) length, and discuss the effect, on the final energy, of the fragmentation of a single condensate into several condensates, associated with distinct individual quantum states.

4-a. Energy and chemical potential

Since the ket | φ 〉 is normalized, multiplying (44)by the bra 〈 φ | and by N , we get:

(49) We recognize the first two terms of the lefthand side as the average values of - фото 464

We recognize the first two terms of the left-hand side as the average values of the kinetic energy and the external potential. As for the last term, using definition (41)for we can write it as 50 which is simply twice the potential interaction - фото 465, we can write it as:

(50) which is simply twice the potential interaction energy given in 33when θ 1 - фото 466

which is simply twice the potential interaction energy given in (33)when | θ 1〉 = | φ 〉. This leads to:

(51) To find the energy note that N μ 2 is the sum of and of h - фото 467

To find the energy картинка 468, note that N μ /2 is the sum of картинка 469and of half the kinetic and external potential energies. Adding the missing halves, we finally get for 52 An advantage of this formula is to involve only one and not two - фото 470:

(52) An advantage of this formula is to involve only one and not two particle - фото 471

An advantage of this formula is to involve only one- (and not two-) particle operators, which simplifies the computations. The interaction energy is implicitly contained in the factor μ .

The quantity μ does not yield directly the average energy, but it is related to it, as we now show. Taking the derivative, with respect to N , of equation (34)written for | θ 〉 = | φ 〉, we get:

(53) For large N one can safely replace in this equation N 12 by N 1 - фото 472

For large N , one can safely replace in this equation ( N — 1/2) by ( N — 1); after multiplication by N , we obtain a sum of average energies:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanics, Volume 3»

Представляем Вашему вниманию похожие книги на «Quantum Mechanics, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanics, Volume 3»

Обсуждение, отзывы о книге «Quantum Mechanics, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x