Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3

Здесь есть возможность читать онлайн «Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanics, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanics, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications.<br> <br> * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë<br> * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly<br> * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications<br> <br> Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms.<br> <br> Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics.<br> <br> Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.<br>

Quantum Mechanics, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanics, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Figure 2shows the variations of the function Quantum Mechanics Volume 3 - изображение 335as a function of μ , for fixed values of β and the volume To deal with dimensionless quantities one often introduces the thermal - фото 336.

To deal with dimensionless quantities, one often introduces the “thermal wavelength” λ Tas:

(49) We can then use in the integral of 48the dimensionless variable 50 and - фото 337

We can then use in the integral of (48)the dimensionless variable:

(50) and write 51 Figure 2 Vari - фото 338

and write:

(51) Figure 2 Variations of the particle number for an ideal fermion gas as a - фото 339

Figure 2 Variations of the particle number for an ideal fermion gas as a - фото 340

Figure 2: Variations of the particle number for an ideal fermion gas, as a function of the chemical potential μ, and for different fixed temperatures T (β = 1/( kBT ) ). For T = 0 (lower dashed line curve), the particle number is zero for negative values of μ, and proportional to μ3/2 for positive values of μ. For a non-zero temperature T = T 1 (thick line curve), the curve is above the previous one, and never goes to zero. Also shown are the curves obtained for temperatures twice (T = 2 T 1 ) and three times (T = 3 T 1 ) as large. The units chosen for the axes are the thermal energy kBT 1 associated with the thick line curve, and the particle number , where λ T1 is the thermal wavelength at temperature T 1.

Largely negative values of μ correspond to the classical region where the fermion gas is not degenerate; the classical ideal gas equations are then valid to a good approximation. In the region where μ ≫ kBT, the gas is largely degenerate and a Fermi sphere shows up clearly in the momentum space; the total number of particles has only a slight temperature dependence and varies approximately as μ3/2 .

This figure was kindly contributed by Genevieve Tastevin .

with 2 :

(52) where in the second equality we made the change of variable 53 Note that - фото 341

where, in the second equality, we made the change of variable:

(53) картинка 342

Note that the value of I 3/2only depends on a dimensionless variable, the product βμ .

If the particles have a spin 1/2, both contributions картинка 343and картинка 344from the two spin states must be added to (46); in the absence of an external magnetic field, the individual particle energies do not depend on their spin direction, and the total particle number is simply doubled:

(54) 4b Bosons For the sake of simplicity we shall also start with spinless - фото 345

4-b. Bosons

For the sake of simplicity, we shall also start with spinless particles, but including several spin states is fairly straightforward. For bosons, we must use the Bose-Einstein distribution (24)and their average number is therefore:

(55) We impose periodic boundary conditions in a cubic box of edge length L The - фото 346

We impose periodic boundary conditions in a cubic box of edge length L . The lowest individual energy 3 is ek = 0. Consequently, for expression (55) to be meaningful, μ must be negative or zero:

(56) картинка 347

Two cases are possible, depending on whether the boson system is condensed or not.

α. Non-condensed bosons

When the parameter μ takes on a sufficiently negative value (much lower than the opposite of the individual energy e 1of the first excited level), the function in the summation (55)is sufficiently regular for the discrete summation to be replaced by an integral (in the limit of large volumes). The average particle number is then written as:

(57) Quantum Mechanics Volume 3 - изображение 348

with:

(58) Performing the same change of variables as above this expression becomes 59 - фото 349

Performing the same change of variables as above, this expression becomes:

(59) Quantum Mechanics Volume 3 - изображение 350

with 4 :

(60) Quantum Mechanics Volume 3 - изображение 351

The variations of Quantum Mechanics Volume 3 - изображение 352as a function of μ are shown in Figure 3. Note that the total particle number tends towards a limit Quantum Mechanics Volume 3 - изображение 353as tends towards zero through negative values, where ζ is the number:

(61) Quantum Mechanics Volume 3 - изображение 354

As the function increases with μ , we can write:

(62) Quantum Mechanics Volume 3 - изображение 355

There exists an insurmountable upper limit for the total particle number of a non-condensed ideal Bose gas.

Figure 3 Variations of the total particle number in a noncondensed ideal Bose - фото 356

Figure 3: Variations of the total particle number in a non-condensed ideal Bose gas, as a function of μ and for fixed β = 1/( kBT ). The chemical potential is always negative, and the figure shows curves corresponding to several temperatures T = T 1 (thick line), T = 2 T 1 and T = 3 T 1. Units on the axes are the same as in Figure 2: the thermal energy kBT 1 associated with curve T = T 1 , and the particle number , where λ T1 is the thermal wavelength for this same temperature T 1. As the chemical potential tends towards zero, the particle numbers tend towards a finite value. For T = T 1, this value is equal to ζN1 (shown as a dot on the vertical axis), where ζ is given by (61). This figure was kindly contributed by Geneviève Tastevin

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanics, Volume 3»

Представляем Вашему вниманию похожие книги на «Quantum Mechanics, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanics, Volume 3»

Обсуждение, отзывы о книге «Quantum Mechanics, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x