Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3

Здесь есть возможность читать онлайн «Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanics, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanics, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications.<br> <br> * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë<br> * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly<br> * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications<br> <br> Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms.<br> <br> Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics.<br> <br> Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.<br>

Quantum Mechanics, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanics, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The first order derivative term yields:

(38) and the second order derivative term is 39 Summing these two terms yields - фото 312

and the second order derivative term is:

(39) Summing these two terms yields 40 Multiplying by 11 e β ei μ the - фото 313

Summing these two terms yields:

(40) Multiplying by 11 e β ei μ the product at the end of the righthand - фото 314

Multiplying by 1/[1 — e –β (ei – μ)] the product at the end of the right-hand side of (36)yields the partition function Z , which cancels out the first factor 1/ Z . We are then left with:

(41) This result proves that 35remains valid even in the case i j β - фото 315

This result proves that (35)remains valid even in the case i = j .

β. Physical discussion: occupation number fluctuations

For two different physical states i and j , the average value Quantum Mechanics Volume 3 - изображение 316for an ideal gas is simply equal to the product of the average values and this is a consequence of the total absence of interaction between the - фото 317and Quantum Mechanics Volume 3 - изображение 318; this is a consequence of the total absence of interaction between the particles. The same is true for the average value Quantum Mechanics Volume 3 - изображение 319.

Now if i = j , we note the factor 2 in relation (41). As we now show, this factor leads to the presence of strong fluctuations associated with the operator the particle number in the state The calculations shows that 42a - фото 320, the particle number in the state The calculations shows that 42a The square of the root mean square - фото 321. The calculations shows that:

(42a) The square of the root mean square deviation Δ ni is therefore given by - фото 322

The square of the root mean square deviation Δ ni , is therefore given by:

(42b) The fluctuations of this operator are therefore larger than its average value - фото 323

The fluctuations of this operator are therefore larger than its average value, which implies that the population of each state | ui 〉 is necessarily poorly defined 1 at thermal equilibrium. This is particularly true for large картинка 324: in an ideal boson gas, a largely populated individual state is associated with a very large population fluctuation. This is due to the shape of the Bose-Einstein distribution (24), a decreasing exponential which is maximum at the origin: the most probable occupation number is always ni = 0. Hence it is impossible to get a very large average картинка 325without introducing a distribution spreading over many ni values. Complement H XV(§ 4-a) discusses certain consequences of these fluctuations for an ideal gas. It also shows that as soon as a weak repulsive particle interaction is introduced, the fluctuations greatly diminish and almost completely disappear, since their presence would lead to a very large increase in the potential energy.

3-c. Common expression

To summarize, we can write in all cases:

(43) with 44 As shown in relation C19 of Chapter XV this average value is - фото 326

with:

(44) As shown in relation C19 of Chapter XV this average value is simply the - фото 327

As shown in relation (C-19) of Chapter XV, this average value is simply the matrix element 〈1 : uk ; 2 : ul картинка 3281 : ui ; 2 : uj 〉 of the two-particle reduced density operator. To get the general expression for the average of any symmetric two-particle operator, we simply use (43)in (28). Consequently, for independent particles, the average values of all these operators are simply expressed in terms of the quantum Fermi-Dirac and Bose-Einstein distribution functions.

Complement C XVIwill show how the Wick theorem allows generalizing these results to operators dealing with any number of particles.

4. Total number of particles

The operator Quantum Mechanics Volume 3 - изображение 329corresponding to the total number of particles is given by the sum over all the individual states:

(45) Quantum Mechanics Volume 3 - изображение 330

and its average value is given by:

(46) As fβ increases as a function of μ the total number of particles is - фото 331

As increases as a function of μ , the total number of particles is controlled (for fixed β ) by the chemical potential.

4-a. Fermions

For the sake of simplicity, we study the ideal gas properties without taking into account the spin, which assumes that all particles are in the same spin state (the spin can easily be accounted for by adding the contributions of the different individual spin states). For a large physical system, the energy levels are very close and the discrete sum in (46)can be replaced by an integral. This leads to:

(47) Quantum Mechanics Volume 3 - изображение 332

where the function Quantum Mechanics Volume 3 - изображение 333is defined as (the subscript ig stands for ideal gas):

(48) Quantum Mechanics Volume 3 - изображение 334

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanics, Volume 3»

Представляем Вашему вниманию похожие книги на «Quantum Mechanics, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanics, Volume 3»

Обсуждение, отзывы о книге «Quantum Mechanics, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x