Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3

Здесь есть возможность читать онлайн «Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanics, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanics, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications.<br> <br> * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë<br> * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly<br> * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications<br> <br> Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms.<br> <br> Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics.<br> <br> Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.<br>

Quantum Mechanics, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanics, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1-a. Density operator

Using relations (42)and (43)of Appendix VI, we can write the grand canonical density operator ρeq (whose trace has been normalized to 1) as:

(1) Quantum Mechanics Volume 3 - изображение 257

where Z is the grand canonical partition function:

(2) Quantum Mechanics Volume 3 - изображение 258

In these relations, β = 1/( kBT ) is the inverse of the absolute temperature T multiplied by the Boltzmann constant kB , and μ , the chemical potential (which may be fixed by a large reservoir of particles). Operators Ĥ and картинка 259are, respectively, the system Hamiltonian and the particle number operator defined by (B-15) in Chapter XV.

Assuming the particles do not interact, equation (B-1) of Chapter XVallows writing the system Hamiltonian Ĥ as a sum of one-particle operators, in each subspace having a total number of particles equal to N :

(3) Quantum Mechanics Volume 3 - изображение 260

Let us call {| uk 〉} the basis of the individual states that are the eigenstates of the operator картинка 261. Noting and ak the creation and annihilation operators of a particle in these states Ĥ - фото 262and ak the creation and annihilation operators of a particle in these states, Ĥ may be written as in (B-14):

(4) where the ek are the eigenvalues of Operator 1can also be written as 5 - фото 263

where the ek , are the eigenvalues of Operator 1can also be written as 5 We shall now compute the average - фото 264. Operator (1)can also be written as:

(5) We shall now compute the average values of all the one or twoparticle - фото 265

We shall now compute the average values of all the one- or two-particle operators for a system described by the density operator (1).

1-b. Grand canonical partition function, grand potential

In statistical mechanics, the “grand potential” Φ associated with the grand canonical equilibrium is defined as the (natural) logarithm of the partition function, multiplied by - kBT ( cf . Appendix VI, § 1-c β ):

(6) Quantum Mechanics Volume 3 - изображение 266

where Z is given by (2). The trace appearing in this equation is easily computed in the basis of the Fock states built from the individual states {| uk 〉}, as we now show. The trace of a tensor product of operators (Chapter II, § F-2-b) is simply the product of the traces of each operator. The Fock space has the structure of a tensor product of the spaces associated with each of the | uk 〉 (each being spanned by kets having a population nk ranging from zero to infinity - see comment (i) of § A-1-c in Chapter XV); we must thus compute a product of traces in each of these spaces. For a fixed k , we sum all the diagonal elements over all the values of nk , then take the product over all k ’s, which leads to:

(7) α Fermions For fermions as nk can only take the values 0 or 1 two - фото 267

α. Fermions

For fermions, as nk can only take the values 0 or 1 (two identical fermions never occupy the same individual state), we get:

(8) and 9 The index k must be summed over all the individual states In case - фото 268

and:

(9) The index k must be summed over all the individual states In case these states - фото 269

The index k must be summed over all the individual states. In case these states are also labeled by orbital and spin subscripts, these must also be included in the summation. Let us consider for example particles having a spin S and contained in a box of volume картинка 270with periodic boundary conditions. The individual stationary states may be written as |k, ν 〉, where kobeys the periodic boundary conditions (Complement C XIV, § 1-c) and the subscript ν takes (2 S + 1) values. Assuming the particles to be free in the box (no spin Hamiltonian), each ν value yields the same contribution to Φ fermions; in the large volume limit, expression (9)then becomes:

(10) β Bosons For bosons the summation over nk in 7goes from nk 0 to - фото 271

β. Bosons

For bosons, the summation over nk in (7)goes from nk = 0 to infinity, which introduces a geometric series whose sum is readily computed. We therefore get:

(11) which leads to 12 For a system of free particles with spin S confined in - фото 272

which leads to:

(12) For a system of free particles with spin S confined in a box with periodic - фото 273

For a system of free particles with spin S , confined in a box with periodic boundary conditions, we obtain, in the large volume limit:

(13) In a general way for fermions as well as bosons the grand potential directly - фото 274

In a general way, for fermions as well as bosons, the grand potential directly yields the pressure P , as shown in relation (61)of Appendix VI:

(14) картинка 275

Using the proper derivatives with respect to the equilibrium parameters (temperature, chemical potential, volume), it also yields the other thermodynamic quantities such as the energy, the specific heats, etc.

2. Average values of symmetric one-particle operators

Symmetric quantum operators for one, and then for two particles, were introduced in a general way in Chapter XV(§§ B and C). The general expression for a one-particle operator is given by equation B12 of that chapter We can thus write 15 with - фото 276is given by equation (B-12) of that chapter. We can thus write:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanics, Volume 3»

Представляем Вашему вниманию похожие книги на «Quantum Mechanics, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanics, Volume 3»

Обсуждение, отзывы о книге «Quantum Mechanics, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x