Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3

Здесь есть возможность читать онлайн «Claude Cohen-Tannoudji - Quantum Mechanics, Volume 3» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Quantum Mechanics, Volume 3: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Quantum Mechanics, Volume 3»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This new, third volume of Cohen-Tannoudji's groundbreaking textbook covers advanced topics of quantum mechanics such as uncorrelated and correlated identical particles, the quantum theory of the electromagnetic field, absorption, emission and scattering of photons by atoms, and quantum entanglement. Written in a didactically unrivalled manner, the textbook explains the fundamental concepts in seven chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications.<br> <br> * Completing the success story: the third and final volume of the quantum mechanics textbook written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloë<br> * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly<br> * Comprehensive: in addition to the fundamentals themselves, the books comes with a wealth of elaborately explained examples and applications<br> <br> Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the Collège des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms.<br> <br> Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics.<br> <br> Franck Laloë was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.<br>

Quantum Mechanics, Volume 3 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Quantum Mechanics, Volume 3», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(15) with when the state of the system is given by the density operator 1 16 - фото 277

with, when the state of the system is given by the density operator (1):

(16) This trace can be computed in the Fock state basis n 1 ni nj - фото 278

This trace can be computed in the Fock state basis | n 1, .., ni .., nj ,..〉 associated with the eigenstates basis {| uk 〉} of картинка 279. If ij , operator картинка 280destroys a particle in the individual state | uj 〉 and creates another one in the different state | ui 〉; it therefore transforms the Fock state | n 1, .., ni ,.., nj ,..〉 into a different, hence orthogonal, Fock state | n 1,.., ni – 1.., nj + 1,..〉. Operator ρeq then acts on this ket, multiplying it by a constant. Consequently, if ij , all the diagonal elements of the operator whose trace is taken in (16)are zero; the trace is therefore zero. If i = j , this average value may be computed as for the partition function, since the Fock space has the structure of a tensor product of individual state’s spaces. The trace is the product of the i value contribution by all the other k values contributions. We can thus write, in a general way:

(17) For i j this expression yields the average particle number in the - фото 281

For i = j , this expression yields the average particle number in the individual state | ui 〉.

2-a. Fermion distribution function

As the occupation number only takes the values 0 and 1, the first bracket in expression (17)is equal to [e –β(ei – μ)]; as for the other modes ( ki ) contribution, in the second bracket, it has already been computed when we determined the partition function. We therefore obtain:

(18) Multiplying both the numerator and denominator by 1 e β ei μallows - фото 282

Multiplying both the numerator and denominator by 1 + e –β (ei – μ)allows reconstructing the function Z in the numerator, and, after simplification by Z , we get:

(19) We find again the FermiDirac distribution function 1b of Complement C - фото 283

We find again the Fermi-Dirac distribution function 1b of Complement C XIV 20 This distribution function gives the - фото 284(§ 1-b of Complement C XIV):

(20) This distribution function gives the average population of each individual - фото 285

This distribution function gives the average population of each individual state | ui 〉 with energy e ; its value is always less than 1, as expected for fermions.

The average value at thermal equilibrium of any one-particle operator is now readily computed by using (19)in relation (15).

2-b. Boson distribution function

The mode j = i contribution can be expressed as:

(21) We then get 22 which using 11 amounts to 23 - фото 286

We then get:

(22) Quantum Mechanics Volume 3 - изображение 287

which, using (11), amounts to:

(23) Quantum Mechanics Volume 3 - изображение 288

where the Bose-Einstein distribution function is defined as 24 This distribution function gives the average population - фото 289is defined as:

(24) This distribution function gives the average population of the individual state - фото 290

This distribution function gives the average population of the individual state | ui 〉 with energy e . The only constraint of this population, for bosons, is to be positive. The chemical potential is always less than the lowest individual energy ek . In case this energy is zero, μ must always be negative. This avoids any divergence of the function картинка 291.

Hence for bosons, the average value of any one-particle operator is obtained by inserting (23)into relation (15).

2-c. Common expression

We define the function as equal to either the function Quantum Mechanics Volume 3 - изображение 292for fermions, or the function Quantum Mechanics Volume 3 - изображение 293for bosons. We can write for both cases:

(25) Quantum Mechanics Volume 3 - изображение 294

where the number η is defined as:

(26) Quantum Mechanics Volume 3 - изображение 295

2-d. Characteristics of Fermi-Dirac and Bose-Einstein distributions

We already gave in Complement C XIV( Figure 3) the form of the Fermi-Dirac distribution. Figure 1shows both the variations of this distribution and the Bose-Einstein distribution. For the sake of comparison, it also includes the variations of the classical Boltzmann distribution:

(27) which takes on intermediate values between the two quantum distributions For a - фото 296

which takes on intermediate values between the two quantum distributions. For a non-interacting gas contained in a box with periodic boundary conditions, the lowest possible energy e is zero and all the others are positive. Exponential e β (ei – μ)is therefore always greater than e –βμ. We are now going to distinguish several cases, starting with the most negative values for the chemical potential.

1 (i) For a negative value of βμ with a modulus large compared to 1 (i.e. for μ ≪ —kBT, which corresponds to the right-hand side of the figure), the exponential in the denominator of (25)is always much larger than 1 (whatever the energy e), and the distribution reduces to the classical Boltzmann distribution (27). Bosons and fermions have practically the same distribution; the gas is said to be “non-degenerate”.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Quantum Mechanics, Volume 3»

Представляем Вашему вниманию похожие книги на «Quantum Mechanics, Volume 3» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Quantum Mechanics, Volume 3»

Обсуждение, отзывы о книге «Quantum Mechanics, Volume 3» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x