Efstratios N. Pistikopoulos - Multi-parametric Optimization and Control

Здесь есть возможность читать онлайн «Efstratios N. Pistikopoulos - Multi-parametric Optimization and Control» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Multi-parametric Optimization and Control: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Multi-parametric Optimization and Control»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

R
ecent developments in multi-parametric optimization and control
Multi-Parametric Optimization and Control Researchers and practitioners can use the book as reference. It is also suitable as a primary or a supplementary textbook. Each chapter looks at the theories related to a topic along with a relevant case study. Topic complexity increases gradually as readers progress through the chapters. The first part of the book presents an overview of the state-of-the-art multi-parametric optimization theory and algorithms in multi-parametric programming. The second examines the connection between multi-parametric programming and model-predictive control—from the linear quadratic regulator over hybrid systems to periodic systems and robust control. 
The third part of the book addresses multi-parametric optimization in process systems engineering. A step-by-step procedure is introduced for embedding the programming within the system engineering, which leads the reader into the topic of the PAROC framework and software platform. PAROC is an integrated framework and platform for the optimization and advanced model-based control of process systems. 
Uses case studies to illustrate real-world applications for a better understanding of the concepts presented Covers the fundamentals of optimization and model predictive control Provides information on key topics, such as the basic sensitivity theorem, linear programming, quadratic programming, mixed-integer linear programming, optimal control of continuous systems, and multi-parametric optimal control An appendix summarizes the history of multi-parametric optimization algorithms. It also covers the use of the parametric optimization toolbox (POP), which is comprehensive software for efficiently solving multi-parametric programming problems.

Multi-parametric Optimization and Control — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Multi-parametric Optimization and Control», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

However, in order to generate continuous optimizers as well as non‐overlapping critical regions, three different approaches have been developed:

Reformulation to an mp‐QP problem [1]: The key idea is to reformulate the mp‐LP problem ( 2.2) into an mp‐QP problem (3.2), which yields the same solution at the considered point. Since mp‐QP problems do not encounter dual degeneracy due to the inherently unique nature of their optimizers, the continuity of the optimizer can be guaranteed.

Graph/Cluster evaluation [2,3]: In [2], it was shown that the solution to an mp‐LP problem is given by a connected graph, where the nodes are the different active sets and the connections are given by the application of a single step of the dual simplex algorithm. In addition, [3] considers the dual of the mp‐LP problem as a parametrized vertex problem and identifies clusters of connected vertices equivalent to the connections in [2]. When dual degeneracy occurs, multiple disconnected graphs/clusters can occur, only some of which may represent the continuous solution of the mp‐LP problem across the entire feasible parameter space [3].

Lexicographic perturbation [4]: The problem of dual‐degeneracy only arises because of the specific numerical structure of the objective function and the constraints. In order to overcome the degeneracy, the right‐hand side of the constraints as well as the objective function are symbolically perturbed in order to obtain a single, continuous optimizer for the solution of the mp‐LP problem. Note that the problem is not actually perturbed, but only the result of a proposed perturbation is analyzed enabling the formulation of a continuous optimizer.

2.2.3 Connections Between Degeneracy and Optimality Conditions

Lastly, it is important to highlight that the impact of degeneracy on mp‐LP problems goes beyond the derivation of more sophisticated solution strategies. In fact, the presence of primal and dual degeneracy can be directly linked to the optimality conditions required for the calculation of the parametric solution. In the following text, each optimality condition required for the basic sensitivity theorem is revisited with the consideration of the presence of degeneracy.

Second‐order sufficient conditions (SOSC): This condition states that the second derivative of the Lagrange function with respect to the optimization variables has to be positive semi‐definite. For mp‐LP (and convex mp‐QP) problems, this condition is naturally satisfied.

Linear Independence Constraint Qualification (LICQ): This condition states that the matrix in Eq. (2.4a)has to have rank , i.e. there cannot be linearly dependent constraints within the active set. Consider now the case of primal degeneracy, where the number of candidate constraints for the active set , i.e. more than constraints are active at the optimal solution. Clearly, the matrix cannot have full rank, since the maximum rank is as . As a result, the occurrence of primal degeneracy can be viewed as a LICQ violation at the optimal solution.

Strict Complementary Slackness (SCS): This condition states that there cannot exist a constraint such that and . In particular, consider that the Lagrange multiplier can be viewed as a “cost” incurred in the objective function when moving along a given constraint. However, dual degeneracy inherently implies that there are multiple points along the same constraints that have the same optimal objective function and thus, this “cost” is equal to 0 (see Figure 2.4b). Hence, the presence of dual degeneracy is directly linked to the violation of the SCS property, as dual degeneracy implies that there exists at least one constraint such that and .

2.3 Critical Region Definition

In linear programming (LP), the term “basic solution” is a result of the use of the simplex algorithm and identifies the solution as a vertex of the feasible space, which is uniquely defined by the indices of the constraints that form the vertex. However, with the emergence of interior‐point methods, as well as in the face of degeneracy, it cannot be guaranteed that the solution obtained from an LP solver is a basic solution leading to a full‐dimensional critical region. As the classical definition of the critical region is directly tied to the active set (i.e. the indices of the constraints that form the vertex), alternative definitions of critical regions have been considered.

The main theme is thereby to identify an appropriate invariancy set over the parametric space. The three sets typically considered are the following [5]:

Optimal basis invariancy [6]: This invariancy refers to the classical definition of the critical region as a set of active constraints that form a basic solution. The main issue with this approach occurs in the case of degeneracy (see section 2.2), which might lead to lower‐dimensional or overlapping regions.

Support set invariancy [7–9]: Given the LP problem formulation(2.14) the support set is defined as . The concept of support set invariancy describes the region of the parameter space for which the same support set remains optimal. It can be shown that this eliminates the issue of degeneracy, as the support set is independent of the active constraints.

Optimal partition invariancy [8, 10–12]: The optimal partition is given by the cone, which is spanned from the solution found in the directions of the inactive constraints.

2.4 An Example: Chicago to Topeka

In order to illustrate the concepts developed in this chapter, a classical shipping problem is considered (adapted from [13] and modified for illustrative purposes):

Given a set of plants картинка 383and a set of markets картинка 384with corresponding supply and demand, and the distances between картинка 385and картинка 386, minimize the total transportation cost.

In particular, the transport to Chicago and Topeka is considered, and the problem‐specific data is given in Tables 2.1and 2.2. Note that the freight cost is $90 per 1000 miles and case and the freight loading cost is $25 per case.

Table 2.1The supply and demand of each plant and market in cases.

Supply Demand
Seattle 350 Chicago 300
San Diego 600 Topeka 275

Table 2.2The distances between each plant and market in thousands of miles.

Chicago Topeka
Seattle 1.7 1.8
San Diego 1.8 1.4

2.4.1 The Deterministic Solution

Equivalently to the beginning of this chapter, we first consider the uncertainty‐free case. Then, the overall transportation cost per case is determined by

(2.15) where is the loading cost is the distance related cost and - фото 387

where картинка 388is the loading cost, картинка 389is the distance related cost, and картинка 390is the distance between plant and market according to Table 2.1. Thus, the amount of product shipped for all combinations needs to be determined. As there are two plants and two markets, this results in four variables, and a total cost given by:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Multi-parametric Optimization and Control»

Представляем Вашему вниманию похожие книги на «Multi-parametric Optimization and Control» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Multi-parametric Optimization and Control»

Обсуждение, отзывы о книге «Multi-parametric Optimization and Control» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x