Efstratios N. Pistikopoulos - Multi-parametric Optimization and Control
Здесь есть возможность читать онлайн «Efstratios N. Pistikopoulos - Multi-parametric Optimization and Control» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Multi-parametric Optimization and Control
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:5 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
Multi-parametric Optimization and Control: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Multi-parametric Optimization and Control»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
ecent developments in multi-parametric optimization and control
Multi-Parametric Optimization and Control Researchers and practitioners can use the book as reference. It is also suitable as a primary or a supplementary textbook. Each chapter looks at the theories related to a topic along with a relevant case study. Topic complexity increases gradually as readers progress through the chapters. The first part of the book presents an overview of the state-of-the-art multi-parametric optimization theory and algorithms in multi-parametric programming. The second examines the connection between multi-parametric programming and model-predictive control—from the linear quadratic regulator over hybrid systems to periodic systems and robust control.
The third part of the book addresses multi-parametric optimization in process systems engineering. A step-by-step procedure is introduced for embedding the programming within the system engineering, which leads the reader into the topic of the PAROC framework and software platform. PAROC is an integrated framework and platform for the optimization and advanced model-based control of process systems.
Uses case studies to illustrate real-world applications for a better understanding of the concepts presented Covers the fundamentals of optimization and model predictive control Provides information on key topics, such as the basic sensitivity theorem, linear programming, quadratic programming, mixed-integer linear programming, optimal control of continuous systems, and multi-parametric optimal control An appendix summarizes the history of multi-parametric optimization algorithms. It also covers the use of the parametric optimization toolbox (POP), which is comprehensive software for efficiently solving multi-parametric programming problems.

,
, and
, respectively, which only depend on the active set
. Thus, the set of active constraints
uniquely defines the critical region
, which completes the proof.
, for problem 2.2is given by
. Then an optimal solution of the resulting LP problem is guaranteed to lie in a vertex, thus featuring
active constraints. However, as the equality constraints have to be fulfilled for all
, the number of active inequality constraints is given by
, where
is the number of equality constraints. As the number of critical regions is uniquely defined by the active set, it is bound by above by all possible combinations of active sets, which is given by
, which completes the proof.
and thus the following theorem can be formulated:
is convex, the optimizer
is continuous and piecewise affine, and the optimal objective function
is continuous, convex, and piecewise affine.
and
. Consider two generic parameter values
and let
,
and
and
be the corresponding optimal objective function values and optimizers. Additionally, let
and define
and
. Then, since
,
, and
are feasible and satisfy the constraints
and
. As these constraints are affine, they can be linearly combined to obtain
, and therefore
is feasible for the optimization problem ( 2.2). Since a feasible solution
exists at
, an optimal solution exists at
and thus
is convex.