Efstratios N. Pistikopoulos - Multi-parametric Optimization and Control
Здесь есть возможность читать онлайн «Efstratios N. Pistikopoulos - Multi-parametric Optimization and Control» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Multi-parametric Optimization and Control
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:5 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
Multi-parametric Optimization and Control: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Multi-parametric Optimization and Control»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
ecent developments in multi-parametric optimization and control
Multi-Parametric Optimization and Control Researchers and practitioners can use the book as reference. It is also suitable as a primary or a supplementary textbook. Each chapter looks at the theories related to a topic along with a relevant case study. Topic complexity increases gradually as readers progress through the chapters. The first part of the book presents an overview of the state-of-the-art multi-parametric optimization theory and algorithms in multi-parametric programming. The second examines the connection between multi-parametric programming and model-predictive control—from the linear quadratic regulator over hybrid systems to periodic systems and robust control.
The third part of the book addresses multi-parametric optimization in process systems engineering. A step-by-step procedure is introduced for embedding the programming within the system engineering, which leads the reader into the topic of the PAROC framework and software platform. PAROC is an integrated framework and platform for the optimization and advanced model-based control of process systems.
Uses case studies to illustrate real-world applications for a better understanding of the concepts presented Covers the fundamentals of optimization and model predictive control Provides information on key topics, such as the basic sensitivity theorem, linear programming, quadratic programming, mixed-integer linear programming, optimal control of continuous systems, and multi-parametric optimal control An appendix summarizes the history of multi-parametric optimization algorithms. It also covers the use of the parametric optimization toolbox (POP), which is comprehensive software for efficiently solving multi-parametric programming problems.
, and (b) from an active set viewpoint, where the dual pivot can be identified in the transition between the active sets associated with the critical regions. Note that although
and
have the point
in common, i.e. “
and
are both optimal active sets” ( Definition 2.1), it is not possible to pass from
to
in a single step of the dual simplex algorithm. Thus,
and
are not connected.
and
. However, in the case of degeneracy or identical constraints, this may not necessarily be the case. While the case of identical constraints can be handled directly, the issue of degeneracy has to be considered in more detail and is discussed in Chapter 2.2.
is unique. This uniqueness can only be guaranteed if the solution of the LP problem is non‐degenerate. In general, degeneracy refers to the situation where the LP problem under consideration has a specific structure, which does not allow for the unique identification of the active set
. 3Commonly, the two types of degeneracy encountered are primal and dual degeneracy (see Figure 2.4):
, which features the optimal objective function value.
is a valid solution of the LP problem at
, the key challenge is to identify the effect of primal and dual degeneracy onto the solution of the mp‐LP problem.
exists, which results in a full‐dimensional critical region, which does not feature any weakly redundant constraints. In the case of Figure 2.4,
. Note that the presence of a lower‐dimensional critical region can be detected by calculating the radius of the Chebyshev ball (see Chapter 1.3).
differ, the presence of dual degeneracy might eliminate the continuous nature of the optimizer described in Theorem 2.1.
. This in turn can only occur, since LP problems are not strictly convex, and thus the minimizer is not guaranteed to be unique. Thus, dual degeneracy is not encountered for strictly convex problems such as strictly convex multi‐parametric quadratic programming (mp‐QP) problems.