Efstratios N. Pistikopoulos - Multi-parametric Optimization and Control

Здесь есть возможность читать онлайн «Efstratios N. Pistikopoulos - Multi-parametric Optimization and Control» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Multi-parametric Optimization and Control: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Multi-parametric Optimization and Control»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

R
ecent developments in multi-parametric optimization and control
Multi-Parametric Optimization and Control Researchers and practitioners can use the book as reference. It is also suitable as a primary or a supplementary textbook. Each chapter looks at the theories related to a topic along with a relevant case study. Topic complexity increases gradually as readers progress through the chapters. The first part of the book presents an overview of the state-of-the-art multi-parametric optimization theory and algorithms in multi-parametric programming. The second examines the connection between multi-parametric programming and model-predictive control—from the linear quadratic regulator over hybrid systems to periodic systems and robust control. 
The third part of the book addresses multi-parametric optimization in process systems engineering. A step-by-step procedure is introduced for embedding the programming within the system engineering, which leads the reader into the topic of the PAROC framework and software platform. PAROC is an integrated framework and platform for the optimization and advanced model-based control of process systems. 
Uses case studies to illustrate real-world applications for a better understanding of the concepts presented Covers the fundamentals of optimization and model predictive control Provides information on key topics, such as the basic sensitivity theorem, linear programming, quadratic programming, mixed-integer linear programming, optimal control of continuous systems, and multi-parametric optimal control An appendix summarizes the history of multi-parametric optimization algorithms. It also covers the use of the parametric optimization toolbox (POP), which is comprehensive software for efficiently solving multi-parametric programming problems.

Multi-parametric Optimization and Control — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Multi-parametric Optimization and Control», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

In order to visualize the concept described in Theorem 2.2, Figure 2.3shows a schematic representation of a connected graph for an mp‐LP problem.

Figure 23A schematic representation of the connectedgraph theorem a from a - фото 360

Figure 2.3A schematic representation of the connected‐graph theorem, (a) from a geometrical viewpoint, i.e. considering the a geometric interpretation of the feasible parameter space картинка 361, and (b) from an active set viewpoint, where the dual pivot can be identified in the transition between the active sets associated with the critical regions. Note that although картинка 362and картинка 363have the point картинка 364in common, i.e. “ картинка 365and картинка 366are both optimal active sets” ( Definition 2.1), it is not possible to pass from картинка 367to картинка 368in a single step of the dual simplex algorithm. Thus, картинка 369and картинка 370are not connected.

The proof of Theorem 2.2is based on the statement that only a single currently inactive constraint limits the solution of the p‐LP problem resulting from the substitution of the parametrized line segment joining картинка 371and картинка 372. However, in the case of degeneracy or identical constraints, this may not necessarily be the case. While the case of identical constraints can be handled directly, the issue of degeneracy has to be considered in more detail and is discussed in Chapter 2.2.

2.2 Degeneracy

The properties described in the previous section are based on the assumption that the active set of the LP problem solved at картинка 373is unique. This uniqueness can only be guaranteed if the solution of the LP problem is non‐degenerate. In general, degeneracy refers to the situation where the LP problem under consideration has a specific structure, which does not allow for the unique identification of the active set картинка 374. 3Commonly, the two types of degeneracy encountered are primal and dual degeneracy (see Figure 2.4):

Primal degeneracy: In this case, the vertex of the optimal solution of the LP is overdefined, i.e. there exist multiple sets such that(2.11) where, based on Eq. (2.3a): (2.12)

Dual degeneracy: If there exists more than one point, which attains the optimal objective function value, then the optimal solution is not unique. Thus, there exist multiple sets with such that(2.13) where . Note that as shown in Figure 2.4, the solution of the problem does not necessarily have to be a vertex, and thus, Eq. (2.12) does not have to hold.

Figure 24Primal and dual degeneracy in linear programming In a primal - фото 375

Figure 2.4Primal and dual degeneracy in linear programming. In (a), primal degeneracy occurs since there are three constraints that are active at the solution, while in (b) dual degeneracy occurs since there is more than one point картинка 376, which features the optimal objective function value.

While any solution картинка 377is a valid solution of the LP problem at картинка 378, the key challenge is to identify the effect of primal and dual degeneracy onto the solution of the mp‐LP problem.

2.2.1 Primal Degeneracy

Primal degeneracy is caused by the presence of weakly redundant constraints, i.e. constraints that are redundant yet intersect with the feasible parameter space (see Chapter 1.3). In particular, the space where the weakly redundant constraints hold as equality is lower‐dimensional with respect to the overall feasible parameter space. Thus, it is clear that if any weakly redundant constraint is chosen as an element of the active set, then the resulting critical region will be lower‐dimensional. 4As a consequence, from all possible combinations of active sets at a given solution, only one active set Multiparametric Optimization and Control - изображение 379exists, which results in a full‐dimensional critical region, which does not feature any weakly redundant constraints. In the case of Figure 2.4, Multiparametric Optimization and Control - изображение 380. Note that the presence of a lower‐dimensional critical region can be detected by calculating the radius of the Chebyshev ball (see Chapter 1.3).

2.2.2 Dual Degeneracy

In general, the effect of primal degeneracy onto the solution of mp‐LP problems is manageable, since it can be detected by solving a single LP problem for each candidate active set combination. However, dual degeneracy is much more challenging as the different active sets may result in full‐dimensional, but overlapping, critical regions. In particular since the optimal solutions картинка 381differ, the presence of dual degeneracy might eliminate the continuous nature of the optimizer described in Theorem 2.1.

Remark 2.4

Dual degeneracy results from the non‐uniqueness of the optimal solution картинка 382. This in turn can only occur, since LP problems are not strictly convex, and thus the minimizer is not guaranteed to be unique. Thus, dual degeneracy is not encountered for strictly convex problems such as strictly convex multi‐parametric quadratic programming (mp‐QP) problems.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Multi-parametric Optimization and Control»

Представляем Вашему вниманию похожие книги на «Multi-parametric Optimization and Control» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Multi-parametric Optimization and Control»

Обсуждение, отзывы о книге «Multi-parametric Optimization and Control» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x