Abdenacer Makhlouf - Algebra and Applications 1

Здесь есть возможность читать онлайн «Abdenacer Makhlouf - Algebra and Applications 1» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Algebra and Applications 1: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Algebra and Applications 1»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is part of Algebra and Geometry, a subject within the SCIENCES collection published by ISTE and Wiley, and the first of three volumes specifically focusing on algebra and its applications. Algebra and Applications 1 centers on non-associative algebras and includes an introduction to derived categories. The chapters are written by recognized experts in the field, providing insight into new trends, as well as a comprehensive introduction to the theory. <p>The book incorporates self-contained surveys with the main results, applications and perspectives. The chapters in this volume cover a wide variety of algebraic structures and their related topics. Jordan superalgebras, Lie algebras, composition algebras, graded division algebras, non-associative C*– algebras, H*-algebras, Krichever-Novikov type algebras, preLie algebras and related structures, geometric structures on 3-Lie algebras and derived categories are all explored. Algebra and Applications 1 is of great interest to graduate students and researchers. <p>Each chapter combines some of the features of both a graduate level textbook and of research level surveys.

Algebra and Applications 1 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Algebra and Applications 1», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

EXAMPLE 1.29.– The mapping is a pseudoinvolution on Q n EXAMPLE 130 The mapping is a - фото 118is a pseudoinvolution on Q ( n ).

EXAMPLE 1.30.– The mapping is a pseudoinvolution on Mmn F Replacing the involution in example - фото 119is a pseudoinvolution on Mm+n ( F ).

Replacing the involution ∗ in example 1.28with the pseudoinvolutions of examples 1.29and 1.30, we get unital Jordan bimodules over Mm+n ( F ), where m , n are odd, and over Q ( n ) (+).

THEOREM 1.7 (see Martin and Piard (1992), Martínez et al . (2010)).– An arbitrary irreducible Jordan bimodule over картинка 120, m + n ≥ 3 or Q ( n ) (+), n ≥ 3, is one of examples 1.27and 1.28with an involution or a pseudoinvolution, or a regular bimodule.

The exceptional Jordan superalgebra K 10has rank 3. Jordan bimodules over K 10have been classified by Shtern (1987).

THEOREM 1.8 (Shtern (1987)).– All Jordan bimodules over K 10are completely reducible. The only irreducible Jordan bimodules over K 10are the regular bimodule and its opposite.

1.7.2. Superalgebras of rank ≤ 2

If J is a Jordan superalgebra of rank ≤ 2, then, generally speaking, it is no longer true that its universal multiplicative algebra is finite dimensional and that any Jordan bimodule is completely reducible.

1.7.2(a)In the case J = Q (2) (+), however, it is true (see Martínez et al . (2010)). The universal multiplicative enveloping algebra U ( Q (2) (+)) is finite dimensional and semisimple and the description of irreducible Jordan bimodules is similar to that of Q ( n ) (+), n ≥ 3.

1.7.2(b)Let us discuss bimodules over Kantor superalgebras. Recall that the Kantor superalgebras Kan( n ) are Kantor doubles of the Grassmann superalgebras G ( n ), n ≥ 1, with respect to the Poisson bracket

Let Kan n G n G n v The Grassmann superalgebra G n is - фото 121

Let Kan( n ) = G ( n ) + G ( n ) v . The Grassmann superalgebra G ( n ) is embeddable in the associative commutative superalgebra A = F [ t, ξ 1,…, ξn ] = F [ t ] ⊗ F G ( n ).

For an arbitrary scalar αF , the Poisson bracket [ , ] extends to the Jordan bracket on A defined by [ t , ξi ] = 0, [ ξi , ξj ] = – δij , [ ξi , 1] = 0, [ t , 1] = αt . The Kantor double Kan( n ) = G ( n ) + G ( n ) v embeds in the Kantor double Kan( A , [ , ]) = A + Av . The subspace V ( α ) = tG ( n ) + tG ( n ) v is an irreducible unital Jordan bimodule over K ( n ). The square of the multiplication operator by the element v acts on V ( α ) as the scalar multiplication by α .

The simple superalgebras Kan( n ), n ≥ 2 are exceptional (see Martínez et al . (2001)). Therefore, they do not have non-zero one-sided Jordan bimodules.

THEOREM 1.9 (Stern (1995), Martínez and Zelmanov (2009), Solarte and Shestakov (2016)).– Every finite dimensional irreducible Jordan bimodule over Kan( n ), n ≥ 2 is isomorphic to V ( α ) or V ( α ) op, αF .

In Solarte and Shestakov (2016), the theorem above was proved for algebras over a field of characteristic p > 2.

1.7.2(c)Jordan superalgebras of a superform. Let Algebra and Applications 1 - изображение 122be a ℤ/2ℤ-graded vector space with a non-degenerate supersymmetric bilinear form. Assume Algebra and Applications 1 - изображение 123, Algebra and Applications 1 - изображение 124and choose a basis e 1,…, em in картинка 125with 〈 ei , ej 〉 = δij and a basis v 1, w 1,…, vn , wn in such that Let Cl m be the Clifford algebra of the restriction of the form - фото 126such that

Let Cl m be the Clifford algebra of the restriction of the form to - фото 127

Let Cl( m ) be the Clifford algebra of the restriction of the form 〈 , 〉 to and let be the simple Weyl algebra Then the tensor product S Cl m - фото 128, and let

be the simple Weyl algebra Then the tensor product S Cl m F Wn is the - фото 129

be the simple Weyl algebra.

Then the tensor product S = Cl( m ) ⊗ F Wn is the universal associative enveloping superalgebra of the Jordan superalgebra J = V + F ∙ 1.

Since the algebra Wn , n ≥ 1 is infinite dimensional, it follows that the superalgebra J does not have non-zero finite dimensional one-sided Jordan bimodules unless n = 0.

Consider in the algebra S the chain of subspaces

Algebra and Applications 1 - изображение 130

where Sr = (0) for r < 0, Algebra and Applications 1 - изображение 131for r ≥ 1. Clearly, Algebra and Applications 1 - изображение 132.

THEOREM 1.10 (Martin and Piard (1992)).–

1 1) For every r ≥ 1, Sr/Sr–2 is a unital irreducible Jordan bimodule over J.

2 2) Let V′= Fu ⊕ V, where |u| = 0. Extend the bilinear form 〈 , 〉 to V′ via 〈u, u〉 = 1, 〈u, V〉 = (0). Then for every even r ≥ 0, the quotient uSr /uSr–2 is a unital irreducible Jordan bimodule over J.

3 3) Every unital irreducible finite dimensional J-bimodule is isomorphic to Sr/Sr–2 or to uSr/uSr–2 for even r.

The classification of irreducible Jordan bimodules over M 1+1( F ) (+), D ( t ), K 3, JP(2) is too technical for an Encyclopedia survey. For a detailed description of finite dimensional irreducible Jordan bimodules, (see Martínez and Zelmanov (2003), Martin and Piard (1992), Martínez and Zelmanov (2006), Martínez and Shestakov (2020)). We will make only some general comments.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Algebra and Applications 1»

Представляем Вашему вниманию похожие книги на «Algebra and Applications 1» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Algebra and Applications 1»

Обсуждение, отзывы о книге «Algebra and Applications 1» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x