Abdenacer Makhlouf - Algebra and Applications 1

Здесь есть возможность читать онлайн «Abdenacer Makhlouf - Algebra and Applications 1» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Algebra and Applications 1: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Algebra and Applications 1»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is part of Algebra and Geometry, a subject within the SCIENCES collection published by ISTE and Wiley, and the first of three volumes specifically focusing on algebra and its applications. Algebra and Applications 1 centers on non-associative algebras and includes an introduction to derived categories. The chapters are written by recognized experts in the field, providing insight into new trends, as well as a comprehensive introduction to the theory. <p>The book incorporates self-contained surveys with the main results, applications and perspectives. The chapters in this volume cover a wide variety of algebraic structures and their related topics. Jordan superalgebras, Lie algebras, composition algebras, graded division algebras, non-associative C*– algebras, H*-algebras, Krichever-Novikov type algebras, preLie algebras and related structures, geometric structures on 3-Lie algebras and derived categories are all explored. Algebra and Applications 1 is of great interest to graduate students and researchers. <p>Each chapter combines some of the features of both a graduate level textbook and of research level surveys.

Algebra and Applications 1 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Algebra and Applications 1», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

THEOREM 1.5 (Zelmanov (2000)).– Let J be a finite dimensional Jordan superalgebra. Then J is semisimple if and only if

where J 1 J tare simple Jordan superalgebras and for every i 1 s - фото 107

where J (1),…, J (t)are simple Jordan superalgebras and for every i = 1,…, s , the superalgebras Jij are simple non-unital Jordan superalgebras over the field extension Ki of F .

1.7. Finite dimensional representations

Jacobson (1968) developed the theory of bimodules over semisimple finite dimensional Jordan algebras.

In this section, we discuss representations (bimodules) of finite dimensional Jordan superalgebras.

DEFINITION 1.15.– The rank of a Jordan superalgebra J is the maximal number of pairwise orthogonal idempotents in the even part .

Unless otherwise stated we will assume char F = 0.

DEFINITION 1.16.– Let V be a ℤ/2ℤ- graded vector space with bilinear mappings V × JV , J × VV . We call V a Jordan bimodule if the split null extension V + J is a Jordan superalgebra.

Recall that in the split null extension the multiplication extends the multiplication on J , products VJ and JV are defined via the bilinear mappings above and VV = (0).

Let Algebra and Applications 1 - изображение 108be a Jordan bimodule over J . Consider the vector space Algebra and Applications 1 - изображение 109, where картинка 110is a copy of with different parity Define the action of J on V opvia Then V opis also a - фото 111with different parity. Define the action of J on V opvia

Then V opis also a Jordan bimodule over J We call it the opposite module of V - фото 112

Then V opis also a Jordan bimodule over J . We call it the opposite module of V .

Let V be the free Jordan J -bimodule on one free generator.

DEFINITION 1.17.– The associative subsuperalgebra U ( J ) of End F V generated by all linear transformations RV ( a ) : VV, vva, aJ, is called the universal multiplicative enveloping superalgebra of J .

Every Jordan bimodule over J is a right module over U ( J ).

DEFINITION 1.18.– A bimodule V over J is called a one-sided bimodule if { J , V , J } = (0).

Let V ( 1/2 ) be the free one-sided Jordan J -bimodule on one free generator.

DEFINITION 1.19.– The associative subsuperalgebra S ( J ) of End F V (1/2) generated by all linear transformations RV (1/2)( a ) : V (1/2) → V (1/2), vva, aJ, is called the universal associative enveloping algebra of J .

Every one-sided Jordan J-bimodule is a right module over S ( J ).

Finally, let J be a unital Jordan superalgebra with the identity element e. Let V (1) denote the free unital J-bimodule on one free generator. The associative subsuperalgebra U 1( J ) of End FV (1) generated by { RV (1/2)( a )} a ∈ J is called the universal unital enveloping algebra of J .

For an arbitrary Jordan bimodule V , the Peirce decomposition

is a decomposition of V into a direct sum of unital and onesided bimodules - фото 113

is a decomposition of V into a direct sum of unital and one-sided bimodules. Hence U ( J ) ≅ U 1( J ) ⊕ S ( J ).

1.7.1. Superalgebras of rank ≥ 3

In this section, we consider Jordan bimodules over finite dimensional simple Jordan superalgebras of rank ≥ 3, that is, superalgebras Josp n 2 m n m 3 Q n n 3 JP n n 3 In this case - фото 114Josp( n , 2 m ), n + m ≥ 3; Q ( n ) (+), n ≥ 3; JP( n ), n ≥ 3.

In this case, the universal multiplicative enveloping superalgebra U ( J ) is finite dimensional and semisimple (Martin and Piard 1992). Hence every Jordan bimodule is completely reducible, as in the case of Jordan algebras.

The superalgebras Josp( n , 2 m ) and JP( n ) are of the type

Algebra and Applications 1 - изображение 115

where A is a simple finite dimensional associative superalgebra and ∗ is an involution.

EXAMPLE 1.25.– An arbitrary right module over A is a one-sided module over H ( A , ∗).

EXAMPLE 1.26.– The subspace K ( A , ∗) = { kA | k ∗= – k } with the action k ∙ a = ka + ak ; kK ( A , ∗), aH ( A , ∗) is a unital H ( A , ∗)-bimodule.

THEOREM 1.6 (Martin and Piard (1992)).– An arbitrary irreducible Jordan bimodule over Josp( n , 2 m ), n + m ≥ 3, or JP( n ), n ≥ 3, is a bimodule of examples 1.25and 1.26or the regular bimodule.

The superalgebras картинка 116, Q ( n ) (+)are of the type A (+), where A is a simple finite dimensional associative superalgebra.

EXAMPLE 1.27.– Every right module over A gives rise to a one-sided Jordan bimodule over A (+).

Suppose now that the superalgebra A is equipped with an involution ∗.

EXAMPLE 1.28.– The subspaces H ( A , ∗) and K ( A , ∗) become Jordan A (+)- bimodules with the actions:

1 1) h ○ a = ha + a∗h;

2 2) h ○ a = ha∗ + ah;

3 3) k ○ a = ka + a∗k;

4 4) k ○ a = ka∗ + ak;

where hH ( A , ∗), kK ( A , ∗), aA .

The associative superalgebras Mm+n ( F ), where both m , n are odd, and Q ( n ), are not equipped with an involution, but they are equipped with a pseudoinvolution.

DEFINITION 1.20.– A graded linear map ∗ : AA is called a pseudoinvolution if ( ab )∗ = (–1)| a|∙|b| ba ∗, ( a ∗)∗ = (–1) |a| a for arbitrary elements Algebra and Applications 1 - изображение 117.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Algebra and Applications 1»

Представляем Вашему вниманию похожие книги на «Algebra and Applications 1» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Algebra and Applications 1»

Обсуждение, отзывы о книге «Algebra and Applications 1» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x